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A Community Detection Method for Social
Network Based on Community Embedding

Meizi Li, Shuyi Lu

Abstract—Most community detection methods focus on the
similarities between detection nodes to achieve community parti-
tioning. Traditional network representation learning methods are
also limited to the local context of the central nodes, which results
in less truly representative results. This article examines nodes’
influence information, nodes’ community affiliating information,
and similarity of community topologies and proposes a more
effective node representation strategy. According to the local node
information and global topology in the social network graph,
a method of combining local node embedding and global com-
munity embedding is also designed. The effectiveness of learning
node representation and community representation is improved
by our approach. The proposed model can also effectively detect
overlapping communities.

Index Terms— Community embedding, node belonging com-
munity information, node embedding, node influence informa-
tion, overlapping community detection.

I. INTRODUCTION

HE quality of the corpus is of interest because it directly

affects the representation learning results of the nodes.
The representation of a node is determined by its neighbors
and its community. Only node embedding cannot address
similar attributes between nodes in the same community;
community detection, the representation, and the distribution
of nodes and community can help tackle this problem.

This study intends to: 1) study the influence of node
information fusion; 2) improve the quality of node learning by
embedding the community information of nodes; and 3) obtain
a stable community distribution of each node, that is, to finally
complete community detecting. To achieve the three aims,
we design a model in three steps. First, a new, high-quality,
and semantically rich corpus is constructed based on a social
network graph. Second, the attribute information and the
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community attribute information of the nodes are learned at
the same time. Third, when the model reaches convergence,
the community distribution of each node is obtained.

Traditional network representation learning (NRL)-based
community detection methods use depth-first and breadth-first
searching strategies when generating corpora. These strategies
will incur random selection errors during traversing selected
nodes, resulting in poor-quality corpora. In addition, these
NRL-based methods simply learn a single index of the
topology of the nodes without considering the relationship
between the nodes and the community, and their final detected
communities can hardly be called ideal.

In this article, we propose a new NRL-based community
detection method to provide a high-quality corpus and a
satisfying detected community. First, a corpus is constructed.
Second, the many-to-many relationships between nodes and
communities are incorporated into representation learning of
the nodes. Third, when the model reaches convergence, all
vector representations and the community distribution of the
nodes can be learned to detect the community. The framework
can also learn the vector representation of the community.

The main contributions of this study are summarized as

follows.
1) Considering the local topological structure of the net-

work and the influence of the nodes’ attribute infor-
mation, we propose a more effective node searching
strategy that can avoid reconstructing a new corpus due
to the errors.

2) Combining the information of many-to-many relation-
ships between nodes and communities, we design a
method that combines local node and global community
embedding so that the learned nodes can indicate that
they have community information.

3) The novel NPL-based model can detect communities in
a more effective way and identify overlapping commu-
nities as well.

II. RELATED WORK
A. Traditional Community Detection Algorithms

A social network’s structure consists of users and relation-
ships. Some relationships are dense, while others are sparse.
A tightly connected part can be seen as a community, and
overlapping communities have common nodes. For a given
social network, community detection can be seen as a process
of clustering.

Algorithms for community detection include the GN algo-
rithms and the label propagation (LC) algorithms [1], [2].
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In the field of module-based community detection algorithms,
Newman et al. [1] use modularity to evaluate the partitioning
results of a community network. The larger the value of the
modularity, the better the results of the community detection.
The Leuven algorithm is a graph model based on modular-
ity. It divides the communities continuously to increase the
modularity [3]. These traditional algorithms have been applied
to different scenarios, only with different ratios of merging
surrounding nodes [4].

Most researchers who study nonoverlapping community
detection have used the LC algorithm [5]-[9]. Its basic idea is
that the label of a node itself depends on the largest number
of labels in its neighbor nodes. The algorithm does not need
any prior parameters and community indicators, and it has a
short convergence period. However, it is difficult to estimate
its iteration times.

Given the unstable results that the LC algorithm produces,
researchers have designated an improved version with better
stability and accuracy. The LabelRank algorithm is based
on the LC and the Markov random walk [5], [10]. Despite
its higher computational complexity and probability for each
label, this algorithm can provide more accurate results than
the LC algorithm [11], [12].

The above studies target the detection of nonoverlapping
communities and have provided satisfying results. However,
real social networks contain more diversified communities,
such as overlapped ones, and researchers have veered their
attention to overlapping community detection
problems [13]-[15].

Spectral clustering, a widely used algorithm in clustering,
is evolved from graph theory. Its main idea is that the edge
weight between two nodes is lower if they are farther away
from each other. Conversely, the edge weight is higher if the
two nodes are closer. Based on the evolution of the clustering
algorithm, the SAEC algorithm transforms the topology of
nodes into a set of edges [13]. By calculating the similarity
matrix between nodes, the algorithm obtains the probability
transfer matrix, then classifies the edges into corresponding
communities by spectral clustering, and, finally, achieves the
goal of overlapping community detection.

Earlier studies ignored the problem of the exponential
growth of label space. To solve the problem, an algorithm
based on latent features has emerged [16], [17]. Based on
the network generation model in overlapping communities,
the algorithm maximizes the generation probability of the
entire network. It then proposes an optimal objective function
to infer the potential features of each node. In addition, the net-
work is introduced into the bipartite graph. To optimize the
objective function, the algorithm analyzes the lower limit of
the feature number [14]. Subsequently, an overlapping detec-
tion algorithm with hierarchical cohesion clustering appeared
based on the local optimal expansion cohesion. The gist of this
algorithm is that initialization should first construct the most
important node and its neighbors and then the node attribution,
until the termination condition of the algorithm is satisfied.
However, there are several drawbacks to these algorithms.
First, they are usually too large, excessively overlapped and
cannot guarantee the stability of multiple operations [15].

Second, they have to consume a large space to store and
deal with the network topology before they could present the
final results of community detection. NRL-based community
discovery methods have come into being to address these
limits.

B. Network Representation Learning

Traditional machine learning-based classification methods
learn how to map the samples’ attributions to the classifi-
cation labels. It is not fit for social networks, given fewer
attributions within them. The Word2vec model proposed by
Mikolov et al. [18] has become a popular tool in the field
of natural language processing (NLP). It vectorizes all words
so that the relationships between words can be quantitatively
measured. It can visually represent the nodes and the rela-
tionships by the low-dimensional vectors. It can also be easily
inputted into the machine learning model. The obtained vector
representation can be performed for tasks, such as community
detection [22]-[24].

With the development of the NLP, an increasing amount
of NLP methods [18]—[21] have been proposed. For exam-
ple, after the word embedding technology was proposed,
Perozzi et al. [27] formulated the DeepWalk algorithm. The
DeepWalk algorithm was the first method based on Word2vec
to vectorize nodes in a social network. The main idea is
to use the random walk path of nodes to simulate the text
generation process. It generates a random walk sequence that
only depends on the local information. It can save computation
time and space consumption.

However, the completely random walk in the traversal
strategy cannot adequately reflect the neighbor information
of a node. The existing literature on NRL has gradually
become more extensive. For example, the LINE algorithm [25]
improves the first-order similarity sparse problem of Deep-
Walk. It uses the second-order similarity to compensate for
the sparse problem of the first-order similarity. To optimize
the learning of node features, it combines the first-order
similarity and the second-order similarity in the objective
function. The LINE algorithm can obtain better results of node
label prediction than DeepWalk. To refine the random walk
strategy in DeepWalk, Grover and Leskovec [26] proposed
the node2vec algorithm that controls the direction of random
walk by defining the offset function, so as to achieve a balance
between the depth-first search and breadth-first search. It also
considers the local and macrostructures information of the
nodes, thereby ensuring the proximity and isomorphism in the
social network structure [28]—[30].

The DeepWalk algorithm traverses the nodes randomly and
deviates from the evolution of the actual social relationship.
As a result, it fails to integrate the total network topology
information [31]. By introducing the community information
of the nodes, researchers proposed an improved version of
DeepWalk, a unified NRL framework called the enhanced
community embedded NRL model. The model is based on
NRL and text modeling. With its inner structure, it can simulta-
neously detect the community distribution of each node, and it
learns the embedding of the nodes together with communities.
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It can consider local and global information effectively in
social networks.

Although NRL has broad application, existing algorithms
still face challenges in retaining information. In order to
learn more information about the nodes, the algorithm should
retain not only the topology information of the network but
also the attributions of the nodes. However, the two factors
are heterogeneous, and combining them effectively is a huge
challenge. In this article, we propose a new algorithm that can
effectively combine the attribution and the topology informa-
tion. It improves the quality of the learning corpus and the
quality of the learning results of the nodes’ representation.
Furthermore, it optimizes the node vector representation by
combining the attribution of the community and can achieve
the goal of community detection.

III. FORMULATION AND METHOD

The nomenclature in community detection and NRL is
introduced as follows. For a given graph G = (V, E) rep-
resenting a social network, the nodes and edges are denoted
as v and e, respectively, and the sets of nodes and edges are
denoted as V and E, respectively. The probability map is a
probability distribution represented by a graph, and P = (u, v)
represents the joint distribution of the node u and the node
v in the V x V vector space. The degree distribution of
the network map refers to the probability distribution of the
number of edges connected to the node when the node is
randomly extracted from the network. The degree distribution
of the scale-free network satisfies the power-law distribution,
i.e., the probability is proportional to the power defined as
follows:

P(d=k) k™. (1)

The degree distribution of a scale-free network is discretely
distributed: most nodes have fewer connections, while fewer
nodes have more connections.

This distribution is similar to the word frequency in lin-
guistics where only a few words are frequently used, while
most of the words are not. Therefore, we can treat nodes in
the network as words in the text and traverse the sequences
in the network as sentences in the text. In word prediction,
the Word2vec model optimizes the training process according
to a specific corpus and outputs the words in an expression of
the vector. The goal of the Skip-Gram model is to provide a
training sample that predicts the probability of the next word
based on the central word. These can be adapted to the network
graph where the probability of the next node is predicted based
on the central node.

The NRL method proposed in this article is based on the
undirected and unweighted network graph. Our goal is to
convert the node into a low-latitude feature representation
according to the mapping function f(u). Let f(u) be a
mapping function that maps the central node to a low-latitude
vector and define Ns(u) as the set of the neighbor nodes of
node u. A set of the neighbor nodes of vertex u is obtained
by sampling the sampling strategy S.

A. Node2vec

In the network G = (V, E), based on the idea of the
Word2vec model, the node2vec algorithm uses the Skip-Gram
model to process texts in the NLP domain, extracting con-
tinuous feature representations. The algorithm compares the
network to the text. The nodes in the network are similar to
the words in the text, and the edges between the nodes are
similar to the sentences in the text. The DeepWalk algorithm
uses a random walk method to artificially define the sequence
length of the walk access. It is used as a graph-based corpus
to obtain different node access sequences. The Skip-Gram
model predicts the context of the central word and learns the
vector representation by maximizing the co-occurrence proba-
bility between words within the window. After the extension,
the main purpose of the node2vec algorithm is to obtain the
probability of neighboring nodes through the central node.
Nodes with the same context represent similarities. In the
training process of the model, the gradient is the basis of
the training parameter update. The gradient formula can be
obtained by constructing the objective function of the training
model. Thus, the goal of node2vec optimization is to maximize
the probability of occurrence of its neighbor nodes, given the
conditions of each central node

max z log P(Ns(u)| f (u)).

ueV

2)

The conditions of (2) are based on two assumptions.

1) Conditional Independence Assumption: Given a central
node, if the probability of its neighbors’ existence is
independent of other nodes in the set of neighbor nodes,
the probability of the neighbors’ existence is equal to
the product of the probability of occurrence of all its
independent neighbor nodes, as defined in the following
equation:

PINs@|fw) =[] Pwlf@). G

v; €Ns(u)

2) Feature Space Symmetry Assumption: Space symmetry
means that a node is the same as the neighbor node
if it is the central node, which is different from the
second-order similarity in the LINE model. Therefore,
under this assumption, the above probability formula can
be rewritten as

) expf (00) - f ()
reds = 11 s ooror o

The negative sampling method is used for optimization. All
the above statements lead to the idea that the network node
represents learning. It has to be noted that the probability
of occurrence between nodes is maximized in a fixed sliding
window. Although the representation of the node vector can
be obtained through (1)—(3), random walking is still required.
The way in node2vec to obtain the neighbor sequence of the
central node is different from that in the DeepWalk model:
it uses a flexible randomization strategy to ensure a balance
between the depth-first and breadth-first search strategies.

“)
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Example of the social network graph structure search strategy. (a) BFS. u and sy, s2, 53, and s4 are in the same community. s¢ and ss, 57, 53, and

59 also are in another community. # and are central nodes in the two communities respectively. (b) DFS. Performing a depth-first search with node u as the
center node can obtain the sequence u, s4, 55, 56, and sg. The small communities formed by u and se as the center in the graph (a) have edge connections,

indicating that the two are similar in some structural properties.

(2)
Fig. 2.

B. Strategy-Enhanced Node2vec

1) Breadth-First Search Strategy (BFS): Traversing graphs
is commonly used in breadth-first and depth-first search strate-
gies. The DeepWalk model utilizes a random walking strategy
where the neighbors are randomly selected for a given central
node and then form a sequence of walks. The node2vec model
improves the random walk strategy into a biased random
walk strategy that can achieve a delicate balance between the
depth-first and breadth-first strategies [35].

In a simple social network, as shown in Fig. 1(a), the nodes
u and sy, s2, 53, and s4 are direct neighbors. The nodes s¢,
Ss, 87, 53, and s9 are also direct neighbors. This is called homo-
geneity, and we can call it the center. Nodes and their imme-
diate neighbors are similar in nature, which is a characteristic
of the BFS.

2) Depth-First Search Strategy (DFS): As shown
in Fig. 1(b), a connected edge between two communities
means that their structural properties are similar. The DFS is
written into the walk sequence according to indirect neighbor
nodes with a similar structure. The BFS focuses on finding
the immediate neighbors around the central node. Compared
to the breadth-first strategy, the depth-first can jump out
of the breadth-first loop, find similar structural nodes more
quickly, and achieve similar structures. Furthermore, the DFS
is more suitable for traversing large data sets.

3) Random Walk Search Strategy Proposed by Node2vec:
Combining two extreme search strategies, the DeepWalk
model proposes a random walk search strategy, that is, given
a central node, its neighbors are randomly selected to form
a random walk sequence. After all the central nodes are
traversed, results in a complete corpus for nodes are ready for
learning vector representation. The node2vec model utilizes a
biased random walk strategy, which combines the advantages
of the depth-first and the breadth-first. Fig. 2 depicts an
example of the biased random walk strategy. That is, given

(b)

Example of the social network graph structure search strategy. (a) Search strategy in Node2vec. (b) Search strategy in our algorithm.

a center node u, p is the probability of returning, which
determines whether or not to go back, and ¢ is a parameter
that reflects the feature of wander with DFS or BFS. Assuming
that a random walk sequence is generated from node ¢, and
node u is reached, the rules for traversing the next node are
illustrated as follows.

If a BFS is adopted, the next step is to select the direct
neighbor node of node ¢, node x;. If a DFS is used, the next
step is to select the indirect neighbor nodes of node ¢, x, or
X3, because the two are separated from the node by one step.
There is also a case where it is returned to node 7.

In the node2vec model, a second-order transition probability
algorithm is used to record the transition probability between
two nodes

Tyx Zap,q(t,x)‘ Wyx 5)

where w,, represents the weight between the two nodes,
which is denoted as w,, = 1 in the undirected graph, and «
is defined as

1
—, ifd, =0
P
Ap.q (t,x) = 11, ifd, =1 (6)
—, ifdy =2
q

where u indicates the current node, ¢ is the previous node
of u, x is the next node of u, and d,, indicates the distance
between ¢ and x. It can be seen that, given a central node,
the next node is determined, depending on the relationship
between the previous step and the next step.

When d = 0, it is returned from node u to 7. At this time,
a = 1/p, meaning that the probability of 1/p has u returns
to the previous node.

When d = 1, x is a direct neighbor node of ¢, which is
equivalent to the result of the breadth-first search and here at
a=1.
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When d = 2, x and ¢ are not directly connected, and the
shortest distance between them is 2, which is equivalent to the
result of the depth-first search. At this time, a = 1/¢, which
means that there is a probability of 1/¢ at which the neighbor
nodes of its neighbors are selected.

4) Strategy-Enhanced Node2vec:

a) NRL that integrates node influence: NRL means net-
work representation learning. First, the nodes are added to a
sequence, indicating that the nodes in the sequence are similar
in some sense. For example, the BFS writes homogenous
direct neighbor nodes into the walk sequence. The idea is
to write a structurally similar indirect neighbor node into the
walk sequence. The written sequence is used for subsequent
learning of the vector representation of the nodes, in order
to fully retain the network information, such as the network
topology information and the influence attribute information
of the nodes themselves. The importance of the node in the
community can be measured by the attribute of influence.
Therefore, the value of the influence of the node has a greater
impact on the learning effect, and the value of the node
influence is normalized here. There are many factors pertaining
to node influence. This article quantifies node influence from
the indices of degree centrality and agglomeration coefficient.

Degree Centrality: Degree is defined as the number of
neighbor nodes of a node in a social network. The greater
the degree of a node, the higher the degree of centrality of the
node, or in other words, the greater the influence of the node
in the network. In an undirected graph, the degree of centrality
represents the sum of the direct connection of a node to all
other nodes. Specifically, for an undirected graph with n nodes,
the degree of centrality of the node v; is defined as follows:

Cdeg = Zeviuj (Di # Dj) (7
i=1

where Cqyey indicates the number of nodes directly connected
to node v;. The measure of node degree centrality not only
reflects the relationship between each node and other nodes
in the network but also depends on the complexity of the
network. In other words, the larger the network, the greater
the possible value and centrality. In order to eliminate the
influence of the scale of the complex network on the centrality,
the above formula is normalized as follows:
c,, = St (8)
deg n—1

In the above formula, the ratio of the number of nodes
directly connected to node i is obtained by dividing the degree
centrality value of the node by the maximum possible number
n — 1 connected to other nodes, and the ratio range is 0.0-1.0,
where 0.0 means that there is no direct contact with any other
node in the network. The point can be considered as a lone
point, and 1.0 means that the point is directly connected to
every other node in the network. It can be observed that the
closer the degree of centrality value after normalization is to
1.0, the greater the influence of the point in the network.

Agglomeration Coefficient: In social networks, the ternary
closure principle is that, in a complex social network, if two
unconnected nodes have a common neighbor node, the prob-
ability of connecting between the two nodes in the future will

increase. As reflected in a specific social network diagram,
the aggregation coefficient of a node is expressed as the
probability that there are connected edges between any two
adjacent nodes of the node, that is, the more the ternary
closures near a node, the larger its aggregation coefficient.
Specifically, the agglomeration coefficient of a node v in an
undirected graph is expressed as
cc n 2n
YT k(k—1)

where k is the number of all neighbor nodes of node v. n
represents the number of interconnections between all adjacent
nodes of node v. It can be obtained from the above formula
that, for node » to have the number of neighbors k, the more
the edges k between the neighbor nodes, the larger the
aggregation coefficient.

Define the node influence value according to the two
measures of the node influence value

fv :,Bcdeg+ yCC,

where f and y are constants, determining the weight of
the two factors above. In the experiment, we usually set it
to 1/2. To ensure that the node influence is determined by
only two indicators, those of degree centrality and aggregation
coefficient, in this article, they should satisfy f +y = 1, and
[, is the mean value of the influence of the node . In other
words, the greater the influence of the node, the closer f, is
to 1.

In order to be able to combine the two at the same time,
the algorithm proposed in this article tells the model that
network information and node attribute information to keep
by defining a clear objective function

©)

(10)

Is|

L(s):%'Z Z logP(z)j|vi)

i=1 i—I<j<i+l

Y

where s denotes the length of the sequence. / denotes the
size of the slide windows. According to the above objective
function, we find that the idea is to maximize the objective
function, that is, given a central node, the probability of
context occurrence is maximized. Among them, by improving
the random walk strategy, we redefine the probability function

a(vi,v))

P(vjlv;) = z
0, otherwise

, if (vi,0)) € E (12)

where the node v; € N(v;). N(v;) is the set of all neighbor
nodes of the node v;. a(v;, v;) is the unnormalized transition
probability between nodes v; and v;, Z is the normalization
constant, and the normalized probability P (v; | v;) ranges from
0.0 to 1.0. On the basis of retaining the network topology
information, the influence information of the nodes themselves
is merged. The influence value f of each node is introduced,
and o is redefined

U if d,,,, =0
p .
apq(vjvi) =1 f ifdy, =1 (13)
i, if d,,, =2
q
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ccommunity c, community ¢,

Fig. 3.

Community detection principle diagram.

where f is the influence information of the node v;. As shown
in the network graph in Fig. 2, starting from the previous node
t, it now comes to node u. The next step to traverse is as
follows:

When d = 1, there are no changes for the directly connected
node. There is still a probability that the value is 1 to select
the node directly connected to it.

When d = 0, it indicates that there is a case where the
probability of f/p is returned to ¢ by the node u, where
f represents the influence value of each node. Because the
influence of each node is different, the probability of returning
to the node ¢ by the node u is different for each node.

Similarly, when d = 2, it means that there is a probability
that f/p has a node that is not directly connected to it. Because
the influence value of each node is different, the probability
of selecting nodes is also different, which can improve the
representation quality of nodes.

Since the calculation cost of the normalization factor
Zu = Zv,-eNs(u) exp(f(v;) - f(u)) is relatively high, the neg-
ative sampling method is used for optimization. When the
objective function converges, a vector representation of each
node is obtained, where v; is the neighbor node of v;, and the
probability Pr(v; | v;) is defined by the softmax function

exp(v} . vi)
ey exp’-vi)

After the above process of training, we can obtain the
embedding of node v s, which retains both the network topol-
ogy information and the node’s influence attribute information.

5) Community Embedding: Given a social network graph
G = (V,E), use V and E to represent the set of nodes and
edges in the network, respectively, with E C (V x V). A com-
munity is composed of a series of closely connected nodes,
while the connections between two different communities are
relatively sparse. As shown in Fig. 3, the goal of community
detection is to detect these more closely connected community
structures in a complex social network. In other words, the
purpose of community detection is to divide the nodes in
the network graph G = (V,E) into K subcommunities
C = {c1,...,¢j,...,cr} according to certain rules, taking
into consideration the degree of similarity of the network
characteristic structure and the attribute information of the
nodes.

Pr(vj |vi) = (14)

Random walk on
social network

Slide window

Random walk
sequence

Assignment communities label

Assignment
communities label

‘ ‘ training
e
Training

embedding [H ] H\‘“ . ‘
0

Node embedding

Fig. 4. Framework of training that integrates node and community informa-
tion.

The community information is embodied in the network
diagram as the vector feature between the nodes. For exam-
ple, the blue line represents the community c;, and the red
line represents the community c;. When the model reaches
convergence, it can detect that the community ¢, contains
nodes vy, v3, 03, 04, v;, and v ;. Community c¢; contains nodes
vs, Vg, U7, g, V9, V10, V11, D12, U;, and Vj. At the same time,
node v; and v; can be identified as belonging to community c;
and ¢, that is, overlapping communities between communities
can be detected. In this article, each node is represented by a
vector consisting of 256 features. We can find that the observed
two nodes with strong connection strength have similar vector
representations. For example, they have a lot of common
neighbors and so on. Thus, the two vectors with strong similar-
ities are more likely to exist in the same community. However,
the community can also be seen as an abstract supernode,
also represented by a vector form similar to the node vector.
In addition, nodes with common neighbors are more likely to
be similar, which is determined by the shared neighborhood
between nodes and also reflects the global structure of the
network graph. Therefore, in order to effectively consider the
attribute information of the community, this article proposes
a new network node representation learning method that
integrates community information. The method is based on
the node vector of the network topology information learned
from the random walk sequence corpus. It can also adjust the
community attribute information and obtain the node vector
that considers both the network topology and the community
attribute information tendency, as shown in Fig. 4.

In a network diagram, a node belongs to multiple com-
munities that overlap. Our main goal is to determine which
community the nodes in a sequence belong to, inspired by the
language model, in a specific sequence. Which community a
node belongs to depends on the distribution of the nodes and
the distribution of the communities in which the nodes are
located. Therefore, each node and the community to which
the node is assigned are used to predict the node content in
the sequence. Also, in the process of learning representation,
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(@) (b)
Network diagram of three data sets. (a) Cora. (b) Wiki. (c) BlogCatalog.

Fig. 5.

the community distribution of nodes is also iteratively updated.
In the process of vector representation of learning nodes,
in order to fully consider the community attribute information,
two assumptions are made.

Assumption 1: Each node in a network can belong to
multiple communities with different probabilities.

Assumption 2: Given a central node v;, v; is known to
belong to multiple communities C = {cy, ..., ¢;, ..., c}. This
article states that, in a particular sequence s;, v; belongs to only
one c¢;. Furthermore, on the condition that the known central
node v; belongs to the community c;, whether the neighbor
node v; of the central node v; belongs to the community
is unknown, which is the key target that we want to obtain
P (l) j | Ci).

Therefore, our objective function is defined as

Is|

0, = ||Z Z longj|c,)

i=1i—-I<j<i+l

15)

In formula (15), ¢; denotes the community to which the
central node v; belongs, v; is the neighbor node of the
central node v;, and P(v;|c;) denotes the probability that
the neighbor node v; of »; belongs to the community, under
the condition that the known central node v; belongs to the
community ¢;. As was done in calculating P(v; |v;), use the
softmax function to calculate P(v; |c;) as follows:

exp(vj . C,’)

P(l)j |Ci) = —ZDEV CXp(Z) -C,').

In the actual optimization phase, we use a negative sam-
pling strategy to optimize the probability P(v; | c;). After the
above representation learning, we can obtain both the vector
representation of the node and the vector representation of the
community. Once the learning process is completed, the node
vector representation v, containing the community information
can be obtained. Possessing both global community informa-
tion and local structure information, we can obtain a new node
vector v” that combines the two pieces of information

(16)

' =v; ®o,. (17)

At the same time, after learning all the processes, the com-
munity distribution of each node is obvious and can be dis-
played in a visual form to achieve the purpose of community
discovery. We can see that the model is better at finding
overlapping communities because the premise is that each
node in the network can belong to multiple communities.

C. Overview of the Proposed Framework

The specific pseudocode code is shown in Algorithm 1.

Algorithm 1 Training Process of This Model
1: Input: graph G(V, E)
2:  community size K
embedding size d
window size ¢
sequence length L
6 Output: vertex embedding v
7: community embedding ¢
8: S = InfluenceSample Path(G)
9: Initialize v and ¢
10: assign a community for each vertex in S randomly
11: for iter =1: L do
12: for each vertex v; in each sequence s € S do
13: calculate statistic-based P (v|c)
14: assign a community ¢; for v; by P(c|v,s)
15:  for each j E [i —t:i+1¢]do
16: L(s) = B LS (log P(vjlvi) +1og P(vjlci))

A

17: v,_v,—a*gvl
18: cj:cj—a*chj
19: end for

20: end for

21: end for

22. repeat steps 10-21 until convergence

The function InfluenceSamplePath() is to construct a
random walk corpus, which integrates the influence informa-
tion of nodes. We assign a community for each node randomly.
We updated the parameters by calculating backpropagation
until the objective function converges.

IV.

In the experiments, we evaluated the effectiveness of the
proposed model through two tasks: link prediction and com-
munity discovery. All tasks were performed on four real-world
data sets, and typical algorithms were selected for compar-
ison. We analyzed the experimental results and drew some
conclusions.

RESULTS AND DISCUSSION

A. Data Sets

The experiments were conducted on three widely adopted
network data sets: Cora, Wiki, and BlogCatalog. We also
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TABLE I
INFORMATION OF DATA SETS

Database Nodes Edges Labels
Cora 2,708 5,429 7
Wiki 2,405 17,981 19

BlogCatelog 10,312 333,983 39

conducted community detection on a social network named
Karate [1], [32]. The detailed information of the data sets for
real-world social networks is shown in Table I.

Cora: The Cora data set consists of machine learning
papers. The network contains 2708 nodes and 5429 edges,
which can form seven classifications.

Wiki: Wikipedia is an online collaboration encyclopedia
written by its users and is widely used in social network
analysis. The data set consists of 2405 web pages and
17981 articles, which are divided into 19 categories. It is
obvious that the social relationship in this data set is relatively
dense.

BlogCatelog: The BlogCatalog data set is taken from the
BlogCatalog management blog and the blogger’s social blog
directory, which forms a social friendship network between
the blogs and the bloggers, including 10312 nodes and
333983 edges. The topics published by the bloggers are
presented as the label values, forming 39 categories.

B. Baseline Methods (Evaluation Standard)

We used four classic models as baseline methods: LINE,
node2vec, DeepWalk, and GraRep. Their working procedures
are described as follows.

LINE [33]: First, the first-order similarity and the empir-
ical probability, as well as the second-order similarity and
the empirical probability of the nodes in the network, are
minimized, and their KL divergences are the primary target
of the neural network training. The output is then merged
as a low-dimensional vector representation of the node. The
method retains the first- and the second-order neighbor infor-
mation of the node.

Node2vec [34]: First, the probability transfer matrix is
initialized according to the parameters p and ¢g. Next, several
random walks are used for each node (the probability is not
equal, and the next neighbor is selected to use the alias
sampling method) to obtain the local sequence information
with a fixed length. The SkipGram method is used to train
the neural network to obtain the vector representation of the
nodes while retaining the local and global characteristics of
the nodes. In other words, it includes structural similarity and
content similarity.

DeepWalk [35]: The DeepWalk algorithm is the first appli-
cation of SkipGram technology in the field of natural language
in social networks. Random walk sequences are generated by
the random walk sampling method for all nodes. In order to
obtain the characteristics of the node, a large corpus is formed
by learning and using the SkipGram model.

GraRep [36]: GraRep solves the problem of network
embedding by matrix decomposition. GraRep can deal with
weighted networks. However, due to a large amount of com-
putation, this method is particularly time-consuming.

C. Link Prediction

The task of link prediction is to predict possible missing
edges based on the existing network structure. The struc-
tural similarity of the nodes in the network, the influence
attribute information of the nodes, and the community attribute
information of the nodes can be used to predict the two
nodes and the potential relationship between them. Therefore,
the algorithm proposed in this article takes into account both
the topology of the network and the influence attributes of the
nodes, and the attribute information of the community they
belong to.

The link prediction algorithm uses Micro-F1 and Macro-F1
as our evaluation metrics, which can measure the accuracy of
the algorithm.

For the three data set networks, some of the connected edges
are randomly removed. However, the overall connectivity
of the network is unchanged after the connected edges are
removed. Use the remaining network structure after culling
to train the model and learn to obtain 128-D features of all
nodes in the network. Calculate the similarity distance between
any two nodes, and use the evaluation index to measure and
analyze the comparative experimental results. Moreover, when
experiments are performed on each data set, regardless of
whether there are connected edges between nodes, in reality,
the distances between all nodes excluding the training set are
calculated, and the predicted structure and the true condition
of edges are used to calculate the value of Micro-F1 and
Macro-F1.

The results on different data are shown in Figs. 6 and 7.
From Figs. 6 and 7, we can draw the conclusions: the algo-
rithm proposed in this article achieves better results than the
other four algorithms in general, which means that it can retain
the network topology information and the influence attribute
information of the node.

D. Overlapping Community Detection

In the community detection experiments, the Edge Between-
ness and Community Structure (EC), Fast-greedy (FC), and
LC algorithms were carried out in four network data sets to
verify our algorithm’s effectiveness in community detection.
More analyses were carried out to ascertain the pros and cons
of the four algorithms.

With the EC algorithm, researchers paid particular attention
to some attributes that many networks seem to share, such
as small-world transitivity, power-law degree distribution, and
network transitivity. This article focuses on another attribute
that is detected in many networks: the attribute of community
structure, in which network nodes are connected together in
tightly woven groups, and there are only loose connections
between them. A method for detecting such communities is
proposed. This method is based on the idea of using the
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Fig. 7. Macro-F1 of the methods. (a) Cora network. (b) Wiki network. (c) BlogCatelog network.

concentration index to find the community boundary, and it
can detect the actual community division.

The FC algorithm is a hierarchical aggregation algorithm for
detecting community structures. This algorithm is faster than
many competing algorithms and is suitable for large networks.
For instance, it can analyze the network of goods for sale
on the website of a large online retailer. If the same buyer
purchases goods from the website frequently, the goods in
the network will be linked together, and the algorithm can
extract meaningful communities from the network to reveal a
large-scale model that exists in customer buying habits.

The LC algorithm is a simple LC algorithm that considers
only the network structure. It does not need to optimize the
predefined objective function or the prior information about
the community. In this algorithm, each node is initialized with
a unique label, and each node uses the label currently owned
by most of its neighbors at each step. During this iteration,
densely connected node groups are formed on the unique label
consensus to form a community.

We used two indexes of modularity and ARI to measure the
performance of the algorithm in this article, and a reasonable
analysis and explanation were also conducted based on the
experimental results.

Modularity is one of the most commonly used indicators in
the community detection field for measuring the effectiveness
of community division. The main idea of modularity is that:
when the similarity of the nodes inside the community is
relatively high, and the similarity of the nodes outside the
community is relatively low, it is regarded as an ideal com-
munity detection result. The calculation of the modularity is

as follows:
(=)

QZZ Zin_

2m

> out

2m

2
c

=>lec—al]. (18

Among them, >’ in represents the sum of the weights of the
edges in the community ¢, > out represents the sum of the
weights of the edges connected to the nodes in the community
¢, and m represents the sum of the weights of all edges in the
community. The weight of all edges in the unweighted network
graph can be regarded as 1. Therefore, the greater the value of
the modularity, the better the effect of community detection.

The adjusted rand index (ARI) is one of the more commonly
used evaluation indicators in clustering algorithms and can also
be used in the field of community detection.

The rand index (RI) is calculated as follows:

B TP + TN
" TP+ FP+FN+TN

where the following holds.

True Positive (TP): The points of the same category that are
divided into the same community.

True Negative (TN): The different types of nodes that are
divided into different communities.

False Positive (FP): The nodes of the different classes that
are divided into the same community.

False Negative (FN): The nodes of the same category that
are divided into different communities.

ARI shows better differentiation on the basis of RI. The
value range of RI is [0, 1], but the value range of ARI is
[—1, 1]. The larger the value of ARI, the more the community
detection structure matches the real situation. The ARI is
calculated as follows:

19)

RI — E[RI]
max(RI) — E[RI]’

The results of comparison experiments on the different data
sets are as follows.

1) Cora Network: Our algorithm performed better than the
others in terms of modularity. For the ARI, the performance of

ARI = (20)
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TABLE 11
RESULTS ON THE CORA NETWORK

Our
EC FC LC algorithm
Modularity 0.401298 0.380670 0.371488 0.418803
ARI 0.391571 0.568439 0.882257 0.583075
Community
10 8 7 7
size
TABLE III
RESULTS ON THE WIKI NETWORK
Our
EC FC LC algorithm
Modularity 0.599625 0.549740 0.601008 0.604569
ARI 0.778102 0.543118 0.899062 0.820829
Community
17 8 19 19
size
TABLE IV

NMI OF BASELINE METHODS ON EXPERIMENTAL NETWORKS

DeepWalk Node2vec  LINE Ol.lr
algorithm
LFR
(1= 0.6) 0. 962 0. 981 0. 669 0.975

our algorithm was very different from other algorithms. It is
found that the LC algorithm performed the best with the largest
value. Our algorithm was close to the FC algorithm. It may
be because of the community size divided by the algorithm.
When the number of communities is not equal to the number
of the real data set labels, the two indicators, modularity and
ARI, will affect the final results.

2) Wiki Network: Our algorithm performed significantly
better than the other algorithms on two indicators of mod-
ularity and community size. As for community size, the LC
algorithm and our algorithm both precisely detected the num-
ber of communities in the network.

In order to better evaluate the accuracy, we also adopted
normalized mutual trust interest (NMI) as an evaluation stan-
dard. The closer the value is to 1, the closer the community
detection result is to the real result, and the more accurate the
algorithm result is.

According to Table IV, the NMI value of the proposed algo-
rithm is similar to those of the other algorithms. It indicates
that its effect on community detection is effective.

V. CONCLUSION

In recent years, NRL has been widely adopted in network
analysis for several reasons. It performs low-dimensional

vectors based on the role of nodes in the network. Based
on the low representation of real values, NRL can measure
the semantics between nodes. It also reduces the traditional
graph-based representation. The conclusions of our study can

be drawn as follows.
1) Based on the local information of the nodes, we use

a stochastic strategy to improve the node2vec model.
We propose a specific global community label training
method that can improve the quality of the prediction
node representation.

2) In general, the representation of a node is determined by
its neighbors and the communities. We propose a com-
munity detection method based on NRL that combines
node embedding, community embedding, and clustering
methods.

3) Our experiments on three prevailed data sets demonstrate
the effectiveness of our model in detecting overlapping

communities and node representation learning.
We will examine and test the generalization of our method on

larger data sets and explore the impact of dynamic communi-
ties on community embedding.
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