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ARTICLE INFO ABSTRACT

Keywords: Fine particulate matter (PMys) is one of the most severe factors contributing to urban air pollution, posing

PMas ) significant risks to human health and environmental quality. Urban vegetation, acting as a natural method for

_Urba“ vegetation pollution mitigation, can effectively reduce harmful air particle concentrations through processes like adsorption

IL_ZE: Celci?nate Zone (LCZ) and deposition. While much research has quantified urban vegetation’s role in PMy s removal, the spatial

Spatiotemporal variability variability and seasonal fluctuations of this process in urban environments remain poorly understood. Further-
more, few studies have quantitatively explored the environmental factors that influence this capability. Using
Shanghai as a case study, this research estimates the PM3 5 reduction by urban vegetation in 2022, integrating the
i-Tree Eco model with Local Climate Zones (LCZs) classification. The results indicate that vegetation plays a
significant role in PMj 5 removal, with a total annual removal of 835 tons and an average removal rate of 0.51 g
-m~2.year! per unit leaf area. The maximum annual air quality improvement reached 21.7%, with an average of
4.09%. The removal flux exhibited a clear "double peak" pattern throughout the year, with peaks occurring in
late spring and late summer. Significant spatial variations in PMy s removal capacity were observed across
different LCZs, ranked as follows: Dense Trees > Open Lowrise > Large Lowrise > Bush/Shrub > Scattered Trees
> Others. Notably, Open Lowrise areas demonstrated considerable potential in both removal flux and total
removal. The 38-42 mm evapotranspiration range was found to be the most effective for PMy s removal.
However, when evapotranspiration exceeded 50 mm, removal efficiency showed a clear diminishing marginal
effect, closely linked to the regulation of leaf stomatal opening and closing. The findings of this study underscore
the importance of vegetation in improving air quality and provide valuable insights for urban planning and
environmental policy.

1. Introduction

The rapid pace of urbanization globally has brought numerous
challenges, with the deterioration of air quality being especially prom-
inent. Fine particulate matter (PMjy ), measuring 2.5 pm or less, can
penetrate deep into the human lungs (Feng et al., 2016; Yang et al.,
2020) and even enter the bloodstream, posing serious risks to public
health (Yin et al., 2018; Seposo et al., 2018). In recent decades, this issue
has garnered significant global attention (Wang et al., 2020; Huang,
2023). In response to this challenge, numerous studies have explored
methods to address PM5 5 pollution from various perspectives, with most
focusing on source control (Zheng et al., 2019). However, given the
limitations of controlling pollution sources, it is crucial to find new

* This paper has been recommended for acceptance by Dr Alessandra De Marco.

pollution reduction strategies. In this context, urban vegetation, as a
natural air purification tool, has attracted significant attention from
researchers for its ability to reduce PMy5 (Wu et al., 2019). Urban
greenery not only beautifies the environment but also removes airborne
particles through multiple mechanisms, including dry deposition on tree
leaves and branches (Zhang et al., 2020; Su et al., 2020), stomatal up-
take (Choi et al., 2021), and chemical reactions on leaf surfaces (Altimir
et al., 2004). Among these, dry deposition is the dominant process,
contributing 70%-90% of PMj; 5 removal by leveraging large vegetation
surface areas and aerodynamic processes (Liu et al., 2016; Du et al.,
2019). In contrast, leaf absorption makes a relatively minor contribution
to PM, 5 removal, as it primarily plays a role in the uptake of gaseous
pollutants rather than particulate matter.
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Using models (Jeanjean et al., 2016) to simulate dust retention in
green spaces and evaluate their effects is a common research method in
environmental science. Among these, the i-Tree Eco model is widely
used for dry deposition. Developed by the USDA Forest Service and its
partners, this model helps users evaluate and manage tree resources by
estimating the contributions of trees and forests to urban and suburban
environments (Ristorini et al., 2023; Su et al., 2022). Its dry deposition
component (UFORE-D) can simulate the removal of atmospheric pol-
lutants by trees and shrubs during non-precipitation periods, Trang et al.
(2022) used this model to evaluate the effect of campus trees on PM
particles at several universities in Ho Chi Minh City. The results showed
that trees in the campuses of International University and University of
Science removed approximately 10 kg and 14 kg of PM; 5 annually,
respectively. At the city or larger scale, studies have classified urban tree
species and assigned different deposition velocities to different species
(Wu et al., 2019), or examined the PMjy 5 reduction capabilities of
various urban surfaces. Li et al. (2023a) estimated the PM, 5 removal
capacity of nature-based green infrastructure and explored the impact of
different landscape patterns on the removal capacity. Some studies
(Corada et al., 2020; Abhijith & Kumar 2020) have also estimated the
economic benefits of particulate matter reduction, further demon-
strating the significant value of the i-Tree Eco model in urban forest
management and policy-making.

These numerous studies (Jeong et al., 2023; Zhou et al., 2019) have
primarily focused on estimating the effectiveness of PMs 5 removal and
exploring the influence of different vegetation types and configurations
(Wu et al., 2019). However, most of these studies are limited to specific
points in time and lack systematic analysis of the seasonal variation in
urban vegetation’s PMj 5 removal capacity. In reality, the dust retention
capacity of vegetation varies significantly across seasons due to changes
in climate and vegetation growth. Ignoring these temporal dynamics
fails to provide a comprehensive understanding of the ability of urban
vegetation to mitigate particulate matter. While some studies have
examined changes in PM; 5 removal by vegetation over multiple years
(Li et al., 2023a), they typically focus on long-term trends and do not
reveal the specific impact of seasonal characteristics on vegetation’s
pollution mitigation efficiency. In terms of spatial analysis, traditional
land surface classification methods are typically based on land use and
land cover (LUCC), for instance, categorizing urban areas into "resi-
dential," "commercial," or "industrial" zones. Although this method
provides basic physical characteristics, it does not fully capture the
complex microclimatic variations within urban areas, especially when
evaluating the role of vegetation in PMjy 5 removal. In contrast, Local
Climate Zones (LCZ) classification not only considers surface charac-
teristics but also factors like building height and heat capacity, which
influence microclimates. This makes LCZ more effective in reflecting the
climatic heterogeneity across different urban areas. In this study, we
utilize the LCZ classification to more accurately analyze the PM;ys
removal performance of vegetation in various spatial environments.
Although environmental variables such as humidity (Ryu et al., 2019),
temperature (Jung et al., 2018), and precipitation have been acknowl-
edged for their impact on removal capacity (Zhang et al., 2017; Yang
et al., 2015), quantitative studies on how these factors affect removal
efficiency remain scarce.

Therefore, this study uses Shanghai as a case study, applying i-Tree
Eco model to estimate the reduction of PM5 5 by urban vegetation and
analyze the spatial distribution and temporal variation of this reduction
capacity throughout 2022. The objectives of this study are: 1) to provide
a more accurate estimate of particulate matter removal using the dry
deposition model, 2) to determine the spatial distribution and seasonal
characteristics of vegetation’s removal capacity across different under-
lying surfaces in Shanghai in 2022, and 3) to explore the impact of
surface evapotranspiration on vegetation’s PM2.5 reduction capacity.
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2. Materials and methods
2.1. Study area

Shanghai is located on the southeastern edge of the Yangtze River
Delta (30°40°~31°53'N, 120°51’~122°12'E), where the Yangtze and
Qiantang Rivers meet and flow into the East China Sea (Fig. 1). Except
for a few eroded residual hills in the southwest, the entire area is a flat,
low-lying plain, with an average elevation of around 4 m above sea
level. Shanghai has a subtropical monsoon climate, with an average
temperature of 15 °C and an annual precipitation of 969.8 mm in 2022,
spread across 85 rainy days. The city’s greenery primarily consists of
urban parks, street greenbelts, residential community green spaces, and
suburban forests and wetlands, dominated by evergreen broad-leaved
forests and mixed evergreen-deciduous forests. Due to its dense popu-
lation and high vehicle numbers, PM, s pollution has been a major focus
of Shanghai’s environmental management efforts. Particularly in
autumn and winter, under adverse climatic conditions, PM5 5 concen-
trations occasionally exceed standard limits, affecting the health of
urban residents (He et al., 2022).

2.2. Data sources and processing

To estimate the removal of air pollutants by urban vegetation in
Shanghai, we utilized a dry deposition model (Nowak et al., 2018;
Nowak et al., 2006). This model integrates environmental data (e.g., air
pollution and meteorological data) with vegetation data (e.g., urban
vegetation cover and leaf area data). The basic data used in this study
are summarized in Table S1. Leaf Area Index (LAI) and evapotranspi-
ration (ET) data were obtained from MODIS products, provided by
NASA'’s Land Processes Distributed Active Archive Center (LP DAAC).
MODIS LAI products are widely used in vegetation monitoring due to
their high temporal and spatial resolution and continuous global
coverage. Yan et al. (2021) evaluated the performance of MODIS and
VIIRS LAI products across multiple years, demonstrating the stability of
MODIS LAI products. On an urban scale, Imhoff et al. (2010) used
MODIS LAI data to analyze the heat island effect in different urban bi-
omes, showcasing the potential application of this dataset in urban
microclimate studies. The spatial resolution of the LAI and ET data is
500 m, and the temporal resolution is 8 days. Daily LAI and ET values
were estimated based on relative imagery over these eight days,
assuming that LAl and ET values remained consistent within this period.
To align with subsequent PMj 5 data, the LAI and ET data were resam-
pled to a 1 km resolution in ArcGIS. As a preliminary assessment, using
1 km resolution data was intended to capture general trends and un-
derstanding over a large area. Although a 1 km resolution may have
certain limitations in urban areas, it provides a macroscopic perspective
that helps identify overall trends and patterns. Numerous related studies
(Zhang et al., 2022; Gaglio et al., 2022; Shen et al., 2022; Yin et al.,
2019) have shown that 1 km resolution data is feasible for using dry
deposition models to study the PMj 5 removal by urban vegetation and
can yield meaningful results.

PM, 5 data were obtained from the ChinaHighPMy 5 dataset (Geng
et al., 2021; Xiao et al., 2022), a high-resolution, high-quality PM> 5
dataset released by Dr. Wei Jing’s team at the University of Maryland in
2021. This dataset integrates multiple satellite remote sensing sources
and artificial intelligence technology, considering ground-based obser-
vations, satellite remote sensing products, atmospheric reanalysis, and
emission inventories to address the spatiotemporal variability of air
pollution. The deposition velocity and resuspension rate of PMy 5 are
related to wind speed. To improve the accuracy of deposition velocity
parameters, we conducted experiments based on the indirect method
proposed by Yin et al. (2019) using a smog chamber. The deposition
velocity (V4) was calculated using the following exponential decay
model:
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Fig. 1. Location of the study area.
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where V (m®) is the volume of the smog chamber, LA (m?) is the total leaf
area, j and k are the decay rate constants under non-leaf and leaf con-
ditions, respectively, and At is the time interval for concentration
measurements (set to 1 s in this study). In this study, j and k and were
determined through fitting the exponential decay curves under non-leaf
and leaf conditions, respectively. The decay rate constant j was found to
be 0.0009612 s~!, while k varied by vegetation type. Representative
local vegetation types were sampled, including Cinnamomum camphora,
Ligustrum lucidum, Magnolia grandiflora, Sabina chinensis, Podocarpus
macrophyllus, Cedrus deodara, Pinus parviflora, Metasequoia glyptos-
troboides, and various shrubs such as Euonymus japonicus ‘Aur-
eomarginatus’, Rhaphiolepis indica, Photinia serratifolia, Ligustrum quihoui,
Azalea, Ilex chinensis, and Pittosporum tobira. The results (Table S2) were
further compared with deposition velocity data reported in other
studies, particularly those conducted in Shanghai (Zhang et al., 2021;
Liu et al., 2024). Our measurements for dense trees under wind speeds of
2-4 m s~ showed general alignment with Zhang et al. (2021), though
slight deviations were observed at higher wind speeds, with differences
within 15%. For shrubs, our measured deposition velocities were
moderately higher (by approximately 8-12%) compared to Liu et al.
(2024). These differences may be attributed to variations in experi-
mental conditions and the selection of vegetation types. Despite these
discrepancies, the overall trends of our measurements are comparable to
existing studies in Shanghai, suggesting consistency within the regional
context.

Meteorological data, including wind speed and precipitation, were
collected from the National Meteorological Information Center. The
data consists of 3-min interval records from 11 meteorological stations
across Shanghai from January 2022 to December 2022. Shanghai’s
typical wind speed range is primarily between 0 and 6 m - s~! (Ge et al.,

2001). Using Python, we extracted the 3-min wind speed and rainfall
data for 2022 and applied kriging interpolation to generate daily
meteorological element maps. Specifically, we employed co-kriging
(Goovaerts, 2000), which incorporates elevation as a covariate to ac-
count for spatial variability. The kriging interpolation process was
implemented using ArcMap 10.8. The semi-variogram model was
selected as Gaussian, and the parameters (range, sill, nugget) were fitted
to the data. The interpolation covered the spatial boundaries of
Shanghai, and the resulting daily meteorological element maps were
resampled to a 1 km unit size to match the subsequent raster
calculations.

2.3. Local Climate Zone (LCZ) map

Local Climate Zones (LCZs) is a classification system used to describe
urban and suburban surface cover characteristics and their impacts on
local climate. This system was proposed by Stewart and Oke (2012),
aiming to provide a standardized method for studying the effects of
different urban environments on climate characteristics. LCZ divides the
surface into various types, including different urban and natural sur-
faces, each classified based on its structure, materials, and thermal
properties influenced by human activities.

Compared to traditional Land Use and Land Cover Classification
(LUCC) methods, a major distinction of the LCZ approach is its focus on
the impact of surface types on urban microclimate, rather than merely
their physical and visible characteristics. While LUCC methods empha-
size the biophysical attributes of the surface, such as vegetation cover
and terrain, LCZ classifies based on climate-related properties like
thermal capacity, thermal conductivity, and humidity. Moreover, LCZ
incorporates surface height information, which is particularly important
in urban environments, as building heights influence wind speed, air
convection, and dry deposition. This results in different LCZ types
having varying impacts on air flow and pollutant dispersion. Liu et al.
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(2013) used remote sensing imagery to estimate the total above-ground
vegetation biomass in different functional areas of Guangzhou and
subsequently estimated the dust retention capacity of different func-
tional areas and the city as a whole. Therefore, we selected the LCZ
classification method to more accurately understand and quantify the
specific impacts of urban surface characteristics on air quality. In this
study, the classification of LCZ was performed using the World Urban
Database and Access Portal Tools (WUDAPT) platform. The LCZ classi-
fication result (Fig. 2) for Shanghai in 2022 were obtained using the
Random Forest classification algorithm and Landsat 8 data. The corre-
sponding classification accuracy was evaluated and presented using box
plots.

2.4. PM 5 dry deposition model

To estimate the amount of PMj 5 removed by vegetation during non-
precipitation periods in Shanghai in 2022, as well as the corresponding
removal rates, we referred to the dry deposition module (UFORE-D) of
the i-Tree model. The hourly pollutant removal flux F;; (ug- m=2- h™1)
for each pixel (area = 1 x 1 km) was calculated using the following
equation:

Fi,j = depM2V5 LAIU . Cij . (1 — rij) x 3600 (2)

The deposition velocity of PMas, Vipmzs (m -s71), represents the
speed at which pollutants are deposited onto the leaf surface. This value
is estimated based on literature and daily average wind speed. The term
1;; represents the resuspension rate of PM, 5 on the leaves for the i th
pixel on thej th day. The concentration of PMy 5, C;; (ug- m~3), is for the i
th pixel on the j th day. The Leaf Area Index (LAI), LAL;; (m?/ m?), for the
i th pixel on thej th day, indicates the leaf area per unit ground area. The
model coefficient 3600 adjusts the flux units to (ug-m—2-h™1) to facilitate
subsequent analysis.

Based on the following formula, the annual removal rate Q; (ug- m~2)
at the pixel scale for urban vegetation can be estimated:
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Q=) FyTy ®

The term T;; represents the dry deposition time for pixel i on day j,
which depends on the daily average precipitation. If the daily average
precipitation exceeds 0.2 x LAL;; mm (Nowak et al., 2013), it is assumed
that all particles are washed off the leaves, reducing the dry deposition
time to zero. Otherwise, the dry deposition time is assumed to be 24 h.

To calculate the total amount of PM; 5 removed by urban vegetation
in Shanghai in 2022, the removal rate Q; is multiplied by the pixel area
and then summed over the entire year. Here, n is the number of pixels,
and A is the area of each pixel (1 x 1 km?):

Total PM, 5 removal = Z Q;-A (€©))

i=1

2.5. Seasonal and Trend Decomposition using Loess (STL)

In this study, we employed Seasonal and Trend Decomposition using
Loess (STL) to analyze the temporal dynamics of vegetation’s PMj 5
removal capacity. STL decomposes a time series into three distinct
components (Bandara et al., 2021; He et al., 2021): trend (T;), season-
ality (S;), and residuals (R;), represented as:

Y., =T, +S,+R: 5)

where Y; is the observed PMj 5 removal rate at time t, T; reflects long-
term trends, S; captures periodic variations, and R, represents short-
term fluctuations or noise.

However, due to the complexity of PMys formation processes,
particularly secondary and tertiary reactions, the residual component
may contain uncaptured dynamic characteristics, potentially affecting
the accuracy of the overall decomposition (Arangio et al., 2016).
Additionally, STL’s smoothing nature might attenuate extreme values,
underestimating the impact of high-pollution events (Putrada et al.,
2023). To address these limitations, we implemented modifications to
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the STL method. A random forest model was introduced to correct the
original residuals (R.), generating refined residuals (R: ) to better
represent the dynamic characteristics. The correction is expressed as:

R, =f(R.) 6

where f( -) denotes the random forest model designed to learn and adjust
for the residual’s complex dynamics. Using the refined residuals, we
updated the trend and seasonality components to ensure consistency
with the corrected residuals. The updated formulas are:

T, =Y,~S: — R,

£

S, =Y.-T, —R, )

These updates resulted in an optimized decomposition framework.
The final decomposition model is expressed as:

Y, =T,+S, +R; (8)

This improved method ensures that the decomposed components
accurately represent the underlying data. The updated trend (T;) more
accurately reflects long-term variations, the updated seasonality (S;)
better captures periodic fluctuations, and the refined residuals (R;)
incorporate dynamic features such as extreme events, improving the
model’s robustness. The STL analysis was implemented using Python,
with daily PMy 5 removal rates as input data. To reduce short-term
fluctuations and highlight long-term trends, a rolling window of 7
days was applied to smooth the data. This helped remove noise from
short-term variations, making the underlying trend clearer. A Savitzky-
Golay filter with a window size of 15 and a polynomial order of 3 was
then applied to further smooth the data, effectively eliminating abrupt
changes and small-scale noise. To capture seasonal patterns and varia-
tions linked to vegetation phenology and meteorological changes, a
seasonal decomposition was performed using the STL method with a
period of 30 days. The robust mode was enabled to mitigate the effects of
outliers, enhancing the stability of the decomposition.

3. Results
3.1. Geospatial patterns of PM 5 mitigation by urban vegetation

The 2022 forest resource monitoring results for Shanghai indicate
that by the end of 2022, the city’s forest coverage rate had reached
18.49%. Shanghai plans to increase the forest coverage rate to 23% by
2035. The majority of Shanghai’s forests are concentrated in suburban
areas, with suburban forests accounting for 97% and urban core areas
accounting for 3%. The government departments of the nine suburban
districts have all placed significant emphasis on afforestation and
greening, exceeding the targets set for the 14th Five-Year Plan. Among
these, Chongming District has made the largest contribution to the city’s
forest coverage rate by promoting the construction of a world-class eco-
island. The 2022 survey indicated that Chongming District’s forest
(including trees, bamboo, and special shrub forests) coverage rate had
reached 30.05%.

In 2022, urban vegetation in Shanghai removed a total of 835 tons of
PM, 5, demonstrating its significant role in improving air quality. The
PM, 5 removal flux averaged 0.51 + 0.03 g -m~2-year™!, ranging from
0.08 to 1.12 g-m~2. The PMy 5 removal rate varied across the city, with
an average rate of 11.62 + 3.31%, a minimum of 4.09%, and a
maximum rate of 21.7%.

Fig. 3 shows the spatial distribution estimate of PM; 5 removal ca-
pacity (g-m~2) by vegetation in Shanghai for the year 2022. The PM, 5
removal capacity of vegetation exhibits spatial heterogeneity, with a
noticeable gradient change from the urban core to the suburban areas.
The central urban area shows a lower PMj 5 removal capacity, whereas
certain suburban areas display higher removal rates. The regions with
the highest PMy5 removal rates are concentrated in the western,
southern, and Chongming Island areas of Shanghai, corresponding to
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Fig. 3. Spatial distribution of PM,s removal by urban vegetation in
Shanghai City.

Qingpu District, Jinshan District, Fengxian District, and Chongming
District, respectively. These areas have extensive green spaces. From the
local climate zone map of Shanghai (Fig. 2), it can be seen that areas
such as Yangpu District, Hongkou District, Jing’an District, Putuo Dis-
trict, Changning District, Xuhui District, Huangpu District, the water-
front of Pudong New Area along the Huangpu River, Baoshan District,
and the southeastern part of Jiading District are mostly covered by mid-
to high-rise buildings, with low vegetation density, resulting in signifi-
cantly reduced PM; 5 removal amounts.

3.2. Contributions of the PMy 5 removal capacity of LCZs

The results of this study reveal the differences in PM3 5 removal ca-
pacities across various LCZs and their contributions to urban environ-
mental purification. Among building land types, Open Lowrise has the
largest area proportion, accounting for 17.35%. The three compact
building types: Compact highrise, Compact midrise and Compact low-
rise, accounting for 0.53%, 1.25%, and 2.82%, respectively. Large
Lowrise is almost non-existent, with only 0.03% coverage (Table 1).
Among all LCZ types, Dense Trees made the highest contribution to
PM, 5 removal, amounting to 208.28 tons. The green space type with the
largest area, Bush/Shrub, followed closely with a removal amount of
194.81 tons.

Fig. 4 further illustrates these findings. Significance letters are added
above the boxplots of different LCZ types, representing statistical
groupings based on Tukey HSD test (p < 0.05). Groups sharing the same
letter have no significant differences, while groups with different letters
show significant differences. Detailed statistical results are provided in
Table S4. The results show that Bush/Shrub, Compact lowrise, Large
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Table 1
Distribution and PM, 5 mitigation contributions of LCZs.

LCZs Area Percentage Area Pollution Removal
(%) (km?) (tons)
1: Compact highrise 0.53 32.47 3.42
2: Compact midrise 1.25 76.69 4.07
3: Compact lowrise 2.82 173.10 22.79
4: Compact Open 9.00 553.12 41.17
highrise
5: Open midrise 6.04 371.04 23.00
6: Open lowrise 17.35 1066.08 173.68
7: Lightweight lowrise 9.07 557.20 34.82
8: Large lowrise 0.03 1.74 0.65
9: Sparsely built 0.67 41.04 5.51
10: Heavy industry 1.73 106.08 55.49
11: Dense Trees 10.01 615.22 208.28
12: Scattered Trees 1.63 100.32 63.42
13: Bush/Shrub 36.50 2242.32 194.81
14: Low Plants 0.43 26.31 4.14

Note: "Bare Rock/Soil" and "Water" are not included in the statistics.

lowrise, and Scattered Trees have no significant differences in PMy 5
removal rates (sharing letter “a”’), whereas Dense Trees, Heavy industry,
and other built-up types (such as Compact highrise and Compact mid-
rise) exhibit significant differences. Overall, vegetated types, such as
Dense Trees and Bush/Shrub, demonstrate more stable PM; 5 removal
rates and significantly higher removal rates compared to some built-up
types. In contrast, Large lowrise shows greater variability in removal
rates due to differences in building height and density. Notably, the
heavy industrial areas exhibit the highest removal efficiency. Many
studies agree that vegetation effectively captures and adsorbs airborne
particulates, thus reducing PMj 5 concentrations. However, the dust
retention capacity of vegetation is limited (Sun et al., 2020; Liu et al.,
2013). When PM; 5 concentrations are excessively high, the adsorption
capacity of vegetation becomes saturated (Wroblewska et al., 2021), and
the dry deposition model does not account for this limitation. This ex-
plains why heavy industrial areas have the highest removal efficiency.
Nonetheless, this high efficiency does not imply that vegetation can
maintain high removal efficiency in such areas over the long term.
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Instead, the dust retention capacity of vegetation quickly decreases
under high pollution conditions, necessitating frequent vegetation
replacement, tree gardening to maintain plant health, leaf washing to
remove accumulated dust, and adding trees to enhance vegetation
coverage. Excluding the impact of PM; 5 concentration by heavy in-
dustrial activities, the order of removal efficiency should be Dense Trees
> Open low-rise > Large low-rise > Bush/Shrub > Scattered Trees >
Others.

3.3. Temporal dynamics of PMg 5 mitigation trends

To explore the temporal variation and seasonal differences in PM 5
removal flux, we applied Seasonal and Trend decomposition using Loess
(STL) to the original removal sequence. As shown in Fig. 5, the original
series was decomposed into trend, seasonal, and residual components.
The trend plot reveals the long-term changes in the data and highlights a
"double peak" pattern: the removal flux begins to rise rapidly in March
and April following the winter season, followed by a brief decline after
spring. Another rise starts in July, peaking in August. To validate the
statistical significance of the double peak pattern, we employed two
complementary statistical methods. The t-test, a parametric test, eval-
uates whether the mean PM; 5 removal flux during the double peak
periods differs significantly from that during other periods under the
assumption of normality. The Mann-Whitney U test, a non-parametric
alternative, assesses whether the distributions of the two groups differ
without assuming normality. Both methods confirmed that the PM; 5
removal flux during the double peak periods was significantly higher
than that of other periods, with p < 0.001. These statistical results are
displayed in Fig. 5, alongside the marked positions of the double peaks,
to provide a clear and rigorous validation of the observed pattern.

The PMys removal flux exhibits significant fluctuations within
certain months (e.g., May and September), while it remains relatively
stable in other months (e.g., February and July) as shown in Fig. 6a. The
violin plots for January to April (transition from winter to spring)
display a wide bottom, particularly in February and March, indicating
many low flux values during these months. The violin plots for May and
June (late spring to early summer) are wider, especially above the me-
dian, indicating better PM, 5 removal performance during this period.
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Fig. 5. Time series of PM, 5 removal rate from vegetation, decomposed into trend, seasonal patterns, and residuals using STL. The trend shows a significant increase
during spring and summer peaks. Statistical significance was tested using t-test and Mann-Whitney U test (p < 0.001).

Furthermore, Fig. 6b shows that high removal windows are concen-
trated in April-May and July-August, with an average removal flux of
71.6 pg m2h~. During summer, the vigorous growth of vegetation,
along with strong photosynthesis and transpiration, significantly en-
hances PM, 5 removal, resulting in a higher average removal flux. In
contrast, the removal effectiveness is weaker in autumn and winter, with
average removal fluxes of 49.07 pg m?h” and 44.80 pg m2h-,
respectively (Fig. 6d). Fig. 6¢ illustrates the broad fluctuations in
removal flux during spring and autumn, whereas summer displays a
more concentrated distribution. Winter values show a relatively wide
distribution, particularly around the median, indicating a higher vari-
ability in PMg 5 removal effectiveness by vegetation during the winter
season.

3.4. Impact of evapotranspiration on PMy 5 reduction

Fig. 7a illustrates the relationship between evapotranspiration and
the PMj 5 reduction rate, with error ellipses (3 standard deviations) used
to show the data distribution. The ellipses clearly reflect the concen-
tration trend of the data, with point density decreasing as it moves
further from the center. The red dot represents the mean value. In the
error ellipse chart, the more elongated the ellipse, the stronger the
correlation, and the tilt direction indicates the correlation direction. The
rightward tilt of the ellipse suggests a positive correlation between the
two variables, where an increase in evapotranspiration corresponds with
an increase in the PMj 5 reduction rate. Regression analysis between
evapotranspiration and the reduction rate shows a moderate correlation,
with an r of 0.52 and an R? of 0.28. This relatively low R? is primarily
due to the study’s focus on the singular effect of evapotranspiration on
PM, 5 reduction, without considering other potential environmental
variables.

Despite the low RZ, the correlation between evapotranspiration and

PM, 5 reduction remains significant, with a p less than 0.01, indicating
statistical significance. To further investigate the nuanced effects of
evapotranspiration on PMj 5 removal, this study employed an equal-
interval division method to divide evapotranspiration into five in-
tervals, capturing the variation in PMjys reduction across different
evapotranspiration levels. The specific ranges for each interval are: Q1
(16.39 mm-38.20 mm), Q2 (38.20 mm-42.68 mm), Q3 (42.68
mm-46.59 mm), Q4 (46.59 mm-50.64 mm), and Q5 (50.64 mm-73.99
mm). From the density distribution plot in Fig. 7b, a complex relation-
ship between evapotranspiration and PM; 5 reduction can be observed.
The high-density region is concentrated in the medium evapotranspi-
ration range (38 mm-50mm), with a PMj 5 reduction rate around 0.6
g-m~2, indicating that removal efficiency is both significant and stable in
this range. In contrast, data points in the lower (<38 mm) and higher
(>50 mm) evapotranspiration ranges are more scattered, with reduced
density, suggesting greater variability in removal efficiency and some
degree of uncertainty.

To more accurately assess the changes in removal efficiency across
different evapotranspiration intervals, we calculated the marginal effect
for each interval by computing the mean PMj 5 reduction rate and the
differences between adjacent intervals (Table 2). The marginal effect
was highest in the Q2 interval (38.20 mm-42.68 mm), reaching 0.67,
indicating that the increase in evapotranspiration had the most signifi-
cant effect on PMj 5 reduction within this range. However, as evapo-
transpiration increased further, the marginal effect gradually declined in
the Q3 to Q4 intervals (42.68 mm-50.64 mm), dropping to 0.17 and
0.09, respectively, showing a slowing rate of improvement in removal
efficiency. In the Q5 interval (50.64 mm-73.99 mm), the marginal effect
slightly rebounded to 0.28, suggesting that other environmental factors
may have contributed to the PMj, s removal efficiency under higher
evapotranspiration conditions. This could be related to stomatal regu-
lation, where stomata begin to close as evapotranspiration exceeds a
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concentration of reduction at moderate evapotranspiration levels.

certain threshold, reducing particle capture efficiency. However, under 4. Discussion
certain environmental conditions, factors such as humidity or stomatal
mechanisms may enhance removal efficiency once again. 4.1. PM3 5 removal and spatiotemporal variation

Our study estimates the removal of PMy s by urban vegetation in
Shanghai using the UFORE-D module, with a total annual removal of
835 tons and an average rate of 0.51 g -m 2.year !. In a field study
conducted by Su et al. (2020) in Taiwan, similar results were obtained.
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Table 2
Evapotranspiration and PM, s reduction, showing mean reduction, standard
deviation, and marginal effect for each interval.

Evapotranspiration Mean PM, 5 Standard Marginal

interval reduction (gm~2) deviation effect

Q1 (16.39 mm-38.20 0.487970 0.141595 -
mm)

Q2 (38.20 mm-42.68 0.612881 0.122199 0.667848
mm)

Q3 (42.68 mm-46.59 0.642798 0.133918 0.165023
mm)

Q4 (46.59 mm-50.64 0.660048 0.148857 0.086149
mm)

Q5 (50.64 mm-73.99 0.722282 0.160557 0.284249
mm)

They validated the i-Tree Eco model estimates through on-site mobile
monitoring and found that the PM; 5 removal rates by vegetation ranged
from 2.51% to 35.57%, demonstrating the reliability of the UFORE-D
module in estimating PM,s removal. Liu et al. (2020) used the
UFORE-D dry deposition module and GeoDetector to estimate the
spatiotemporal patterns in the Fenwei Plain of China. Their results
showed that the average PMs 5 removal rates by vegetation in 2000,
2010, and 2021 were 0.186%, 0.243%, and 0.435%, respectively, which
are similar to the findings of this study. In Shanghai, a study by Zhang
et al. (2021) estimated that urban forests removed approximately 874
tons of PMjy 5 in 2017, which is comparable to the 835 tons estimated in
this study for 2022. The observed differences may be attributed to
variations in vegetation coverage and meteorological conditions be-
tween the two time periods. Additionally, the study highlighted seasonal
variability, with the highest PMys removal in summer, and spatial
variability, where suburban areas contributed more significantly than
urban centers. These seasonal and spatial patterns are consistent with
the trends observed in this study.

Vegetation has a significant mitigating effect on air pollution, as
confirmed by many studies (Dwijendra et al., 2023; Zhai et al., 2022).
These effects of vegetation have been evaluated using a variety of
models and methods, each with distinct assumptions and applicable
scales. The UFORE module is widely used for quantifying urban vege-
tation’s ecosystem services due to its computational efficiency and
relatively simple parameterization, making it suitable for large-scale
assessments (Nowak et al., 2013). However, it simplifies certain pro-
cesses, such as assuming uniform deposition velocities and leaf area
index, which may not fully reflect the complexity of deposition dy-
namics in heterogeneous urban environments. The current limitation of
the model’s resolution primarily comes from the wind speed data. Wind
speed is a key factor influencing the model’s core parameter, deposition
velocity, especially in densely built urban areas where the layout of
streets and buildings significantly affects airflow. Finer-resolution wind
speed data can more accurately reflect local airflow patterns, particu-
larly in areas with dense buildings and complex street layouts, thereby
improving the estimation of deposition velocity and further optimizing
the assessment of PM; 5 removal capacity. Meanwhile, increasing the
spatial resolution of the Leaf Area Index (LAI) data can also significantly
improve the model’s accuracy. Higher-resolution LAI data can more
precisely depict vegetation coverage in different urban areas, particu-
larly in regions with complex green space distribution or limited
greenery, allowing the model to more accurately evaluate the contri-
bution of various green spaces to PMsys removal. In contrast, the
ENVI-met model provides high-resolution simulations by incorporating
detailed microclimatic processes, such as wind speed, temperature, and
pollutant dispersion, which are particularly effective for small-scale
studies (Bruse and Fleer, 1998). Yet, its high computational cost often
restricts its application to limited areas. To address this limitation,
future research could integrate the strengths of both models by
combining ENVI-met’s microclimatic simulations with i-Tree Eco’s
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ecological benefit calculations. Specifically, microclimate data gener-
ated by ENVI-met, including wind speed, temperature variations, and
pollutant concentrations, can be used as input to optimize i-Tree Eco’s
parameters, particularly in environments with complex urban layouts
and dynamic weather conditions. This integration would enhance the
accuracy of ecological assessments, such as particulate matter retention
and overall air quality improvement, by providing a more nuanced
understanding of how vegetation interacts with its environment. Addi-
tionally, combining these models would enable cross-scale analyses,
from small-scale simulations of individual parks or street canyons to
large-scale urban green space planning, offering a more comprehensive
and scalable approach to urban vegetation management. This combined
framework would allow for a more precise evaluation of the spatial and
temporal dynamics of vegetation’s role in mitigating urban environ-
mental challenges, such as air pollution and heat island effects.

Fig. 5 illustrates the seasonal dynamics of vegetation’s PMa s
removal flux, characterized by a distinct double-peak pattern in spring
and summer. These seasonal variations are primarily influenced by a
combination of vegetation activity and atmospheric conditions. In
spring (March to April), the first peak coincides with the rapid recovery
of vegetation coverage. The increased surface area significantly en-
hances the interception and dry deposition of particles, leading to a
marked rise in removal flux. Additionally, the elevated relative humidity
during spring enhances the hygroscopic growth of particles, facilitating
their deposition on vegetation surfaces. This phenomenon has been
demonstrated in studies of Shanghai, where humid conditions signifi-
cantly promote PM, 5 removal, providing a reasonable explanation for
the spring peak (Liu et al., 2018). The second peak in summer (July to
August) aligns with the annual maximum vegetation coverage, offering
an expanded surface area for particle deposition. Concurrently, elevated
temperatures and strong convective conditions result in higher particle
concentrations in the atmosphere, particularly due to the intensified
formation of secondary particles such as nitrates and sulfates. This
process, driven by accelerated photochemical reactions, creates favor-
able conditions for vegetation to capture these particles (Qiao et al.,
2014). However, this double-peak pattern also highlights the temporal
mismatch between vegetation’s removal capacity and PMs 5 emissions.
Winter represents the period of highest PM; 5 concentrations (Xiao et al.,
2015), primarily driven by emissions from northern heating activities,
while vegetation coverage and activity are significantly reduced during
this time, resulting in a noticeable decline in filtering capacity.

4.2. Role of evapotranspiration in enhancing PM s mitigation

Previous studies have shown that various environmental factors in-
fluence leaf dust retention and the pollution removal efficiency of
vegetation (Li et al., 2023b). Precipitation significantly enhances PMj 5
removal efficiency by washing particles off leaves and reducing the
chance of resuspension, particularly during high-rainfall periods. Wind
speed also plays a crucial role by facilitating particle deposition and
increasing air exchange near leaf surfaces, which enhances the effec-
tiveness of vegetation in capturing PMy 5 (Pace & Grote, 2020). Beyond
precipitation and wind, other meteorological factors such as tempera-
ture, humidity, and atmospheric pressure have been found to signifi-
cantly impact PMj 5 concentrations. For instance, increased humidity
raises leaf surface wetness, promoting particle adhesion, while high
temperatures accelerate evapotranspiration, indirectly improving par-
ticle retention (Yan et al., 2020; Zhang et al., 2016). Furthermore, the
combined effects of meteorological factors often exhibit nonlinear and
lagged relationships. For example, the influence of rainfall and wind on
PM, 5 reduction may persist for several days, while humidity and tem-
perature effects often peak rapidly before diminishing (Yang et al.,
2021). These interactions highlight the complexity of environmental
influences on PMj 5 removal. This study focuses on evapotranspiration
as a central mechanism, given its direct role in regulating
leaf-atmosphere interactions and its potential to interact with other
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meteorological factors to enhance particle retention (Chen et al., 2020;
Han et al., 2020).

Our experiment also found that while there is a significant positive
correlation between evapotranspiration and removal efficiency, changes
in evapotranspiration do not always align with changes in PMjy;5
removal rates. In the moderate evapotranspiration range (40-50 mm),
removal efficiency reached a relatively high and stable level (Fig. 7b),
indicating that evapotranspiration has the most pronounced effect on
PM; 5 removal within this range. By significantly increasing local at-
mospheric humidity, evapotranspiration creates favorable conditions
for the hygroscopic growth of fine particles. Higher humidity enlarges
particle diameter and enhances deposition velocity, facilitating their
deposition onto leaf surfaces. This humidity effect not only optimizes
particle capture conditions around vegetation but also becomes partic-
ularly pronounced in high-humidity environments (Ebrahimian et al.,
2019). At the same time, evapotranspiration directly influences particle
capture through stomatal regulation. Under moderate evapotranspira-
tion, stomata remain open, enhancing particle deposition efficiency.
However, when evapotranspiration exceeds a certain threshold, plants
may partially or completely close their stomata to maintain water bal-
ance, reducing further particle capture (Kool et al., 2014). Studies have
demonstrated that changes in stomatal conductance play a critical role
in determining the contribution of evapotranspiration to particle cap-
ture (Rosenberg et al., 1989), further highlighting the importance of
stomatal dynamics in this process. Additionally, evapotranspiration
significantly impacts particle transport efficiency by altering aero-
dynamic conditions around leaf surfaces. By reducing boundary layer
thickness, evapotranspiration lowers resistance to particle transport,
enhancing deposition efficiency. This boundary layer dynamic is
particularly critical in low-wind-speed environments, where evapo-
transpiration improves local airflow exchange and creates more favor-
able conditions for particle capture (Cascone et al., 2019). However, as
evapotranspiration increased, the improvement in removal efficiency
diminished, showing a clear marginal effect. In the 42-50 mm range, the
effect weakened noticeably, and beyond 50 mm, this decline became
more pronounced. This trend suggests that excessive evapotranspiration
leads to a saturation point, beyond which further increases do not
significantly enhance removal efficiency. This may be due to stomatal
behavior, as excessive evapotranspiration reduces the vapor pressure
deficit (Xu et al., 2016), prompting stomata to partially or completely
close, thereby limiting PMj 5 capture efficiency.

4.3. Implications and uncertainties

This study quantitatively estimated the capacity of urban vegetation
to remove PM, 5, emphasizing its key role in improving urban air
quality. Using Shanghai as a case study, the i-Tree Eco model was
applied to assess vegetation’s PMs 5 removal capacity across different
periods and Local Climate Zones (LCZs) in 2022. Results showed that
vegetation reduces PMy 5 through dry deposition, and evapotranspira-
tion significantly enhances removal efficiency. However, this effect di-
minishes beyond 50 mm. These findings not only contribute to a
comprehensive understanding of the role of vegetation in air pollution
control but also offer specific guidance for the development and man-
agement of future urban green infrastructure. Despite the achievements
of this study, there are still several limitations that need to be addressed
in future research.

First, model limitations are a key issue. While this study employs the
i-Tree Eco model to estimate PMjy 5 removal by urban vegetation, we
acknowledge its limitations in capturing the detailed effects of urban
micro-scale features, such as varying building heights, street canyon
effects, and local airflow dynamics. These micro-scale processes can
influence PM, 5 transport and deposition but are beyond the spatial
resolution and functional scope of the i-Tree Eco model. To complement
this limitation, micro-scale models such as ENVI-met offer an alternative
approach for simulating detailed urban environments. ENVI-met
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integrates three-dimensional airflow, pollutant dispersion, and vegeta-
tion interactions, making it suitable for small-scale studies, such as
street-level analysis. However, due to its high computational cost and
focus on localized areas, ENVI-met is not ideal for large-scale regional
assessments, which remain the primary strength of i-Tree Eco. Future
studies could explore combining both approaches: using i-Tree Eco for
regional-scale evaluations and ENVI-met for micro-scale refinements to
achieve a more comprehensive understanding of vegetation’s role in
mitigating PMy 5 pollution across different spatial scales. Second, this
study does not explicitly account for the vertical distribution of PMj s,
which represents a limitation. Existing studies on vertical distribution
often rely on atmospheric models (e.g., WRF-Chem) or lidar-based ob-
servations. While these methods excel at simulating vertical variations,
their computational complexity and data requirements have limited
their widespread application in large-scale urban vegetation studies.
The PMy 5 data used in this study primarily represent surface-level
concentrations, which are suitable for large-scale analysis. However,
vertical variations may influence deposition velocities and removal ca-
pacity. Future research should incorporate high-resolution vertical
profiles or multilayer atmospheric models to further enhance the accu-
racy of PM, 5 removal estimates by urban vegetation. Finally, we did not
sufficiently account for the seasonal variation in vegetation character-
istics, particularly how the growth and senescence cycles of plants (such
as leaf emergence, maturation, and leaf drop) may influence their par-
ticulate matter (PM) removal capabilities. The growth and maturation of
leaves during the spring and summer seasons likely enhance the plant’s
ability to capture and retain particulate matter due to increased leaf area
and more active photosynthesis. However, during the fall and winter
seasons, as plants enter dormancy and lose their leaves, the PM removal
efficiency of vegetation may decrease significantly. Previous studies
have shown that plant foliage in active growth phases is more effective
at trapping particulate matter, while the reduction in leaf area during
the autumn and winter leads to diminished removal efficiency (Wang
et al., 2013). Additionally, the leaf surface characteristics, such as waxy
coatings, change with the seasons, further influencing the plant’s ability
to capture particulates. Due to the scope of this study and its limited
temporal design, we were unable to fully assess the potential impact of
seasonal changes in vegetation characteristics on particulate matter
removal. Future research could incorporate seasonal variations into the
analysis framework to more accurately evaluate the role of vegetation in
air purification throughout the year, further enhancing our under-
standing of its contribution to improving urban air quality.

5. Conclusions

This study aimed to assess the removal effect of urban vegetation on
PM; 5 by combining ground station data with remote sensing data and
using the i-Tree model for dry deposition estimation. Based on the basic
removal effects obtained, the contributions of different LCZ types were
statistically analyzed. The study examined the variation in removal flux
throughout the year and its seasonal characteristics, and explored the
impact of surface evapotranspiration on the PM; 5 removal by vegeta-
tion. The results estimate that urban vegetation significantly reduces
PM, 5, with a total removal of 835 tons in 2022, an average removal rate
of 0.51 g -m2-year™! per unit leaf area, and an average air quality
improvement of 4.07%. Different LCZ types contributed differently to
the removal amount, with Dense Trees > Open Lowrise > Large Lowrise
> Bush/Shrub > Scattered Trees > Others. Considering both removal
amount and rate, Open Lowrise demonstrated significant dust retention
potential among the surface types. Its low building density and ample
open spaces provide an optimal environment for dust retention pro-
cesses. Additionally, the PM; 5 removal flux by vegetation exhibited a
"double peak" pattern, with a rapid increase in removal flux observed in
March and April after winter, a brief decline after spring, another rise
starting in July, and a peak in August. The removal flux also displayed
clear seasonal characteristics, with higher fluxes in spring and summer
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and lower fluxes in winter. By analyzing the relationship between
evapotranspiration and PMj 5 removal rate, we found that an increase in
evapotranspiration significantly enhances the PM, 5 purification effect
of vegetation. However, this improvement does not continue to rise with
further increases in evapotranspiration.
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