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A B S T R A C T

Fine particulate matter (PM2.5) is one of the most severe factors contributing to urban air pollution, posing 
significant risks to human health and environmental quality. Urban vegetation, acting as a natural method for 
pollution mitigation, can effectively reduce harmful air particle concentrations through processes like adsorption 
and deposition. While much research has quantified urban vegetation’s role in PM2.5 removal, the spatial 
variability and seasonal fluctuations of this process in urban environments remain poorly understood. Further
more, few studies have quantitatively explored the environmental factors that influence this capability. Using 
Shanghai as a case study, this research estimates the PM2.5 reduction by urban vegetation in 2022, integrating the 
i-Tree Eco model with Local Climate Zones (LCZs) classification. The results indicate that vegetation plays a 
significant role in PM2.5 removal, with a total annual removal of 835 tons and an average removal rate of 0.51 g 
⋅m− 2⋅year− 1 per unit leaf area. The maximum annual air quality improvement reached 21.7%, with an average of 
4.09%. The removal flux exhibited a clear "double peak" pattern throughout the year, with peaks occurring in 
late spring and late summer. Significant spatial variations in PM2.5 removal capacity were observed across 
different LCZs, ranked as follows: Dense Trees > Open Lowrise > Large Lowrise > Bush/Shrub > Scattered Trees 
> Others. Notably, Open Lowrise areas demonstrated considerable potential in both removal flux and total 
removal. The 38–42 mm evapotranspiration range was found to be the most effective for PM2.5 removal. 
However, when evapotranspiration exceeded 50 mm, removal efficiency showed a clear diminishing marginal 
effect, closely linked to the regulation of leaf stomatal opening and closing. The findings of this study underscore 
the importance of vegetation in improving air quality and provide valuable insights for urban planning and 
environmental policy.

1. Introduction

The rapid pace of urbanization globally has brought numerous 
challenges, with the deterioration of air quality being especially prom
inent. Fine particulate matter (PM2.5), measuring 2.5 μm or less, can 
penetrate deep into the human lungs (Feng et al., 2016; Yang et al., 
2020) and even enter the bloodstream, posing serious risks to public 
health (Yin et al., 2018; Seposo et al., 2018). In recent decades, this issue 
has garnered significant global attention (Wang et al., 2020; Huang, 
2023). In response to this challenge, numerous studies have explored 
methods to address PM2.5 pollution from various perspectives, with most 
focusing on source control (Zheng et al., 2019). However, given the 
limitations of controlling pollution sources, it is crucial to find new 

pollution reduction strategies. In this context, urban vegetation, as a 
natural air purification tool, has attracted significant attention from 
researchers for its ability to reduce PM2.5 (Wu et al., 2019). Urban 
greenery not only beautifies the environment but also removes airborne 
particles through multiple mechanisms, including dry deposition on tree 
leaves and branches (Zhang et al., 2020; Su et al., 2020), stomatal up
take (Choi et al., 2021), and chemical reactions on leaf surfaces (Altimir 
et al., 2004). Among these, dry deposition is the dominant process, 
contributing 70%–90% of PM2.5 removal by leveraging large vegetation 
surface areas and aerodynamic processes (Liu et al., 2016; Du et al., 
2019). In contrast, leaf absorption makes a relatively minor contribution 
to PM2.5 removal, as it primarily plays a role in the uptake of gaseous 
pollutants rather than particulate matter.
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Using models (Jeanjean et al., 2016) to simulate dust retention in 
green spaces and evaluate their effects is a common research method in 
environmental science. Among these, the i-Tree Eco model is widely 
used for dry deposition. Developed by the USDA Forest Service and its 
partners, this model helps users evaluate and manage tree resources by 
estimating the contributions of trees and forests to urban and suburban 
environments (Ristorini et al., 2023; Su et al., 2022). Its dry deposition 
component (UFORE-D) can simulate the removal of atmospheric pol
lutants by trees and shrubs during non-precipitation periods, Trang et al. 
(2022) used this model to evaluate the effect of campus trees on PM 
particles at several universities in Ho Chi Minh City. The results showed 
that trees in the campuses of International University and University of 
Science removed approximately 10 kg and 14 kg of PM2.5 annually, 
respectively. At the city or larger scale, studies have classified urban tree 
species and assigned different deposition velocities to different species 
(Wu et al., 2019), or examined the PM2.5 reduction capabilities of 
various urban surfaces. Li et al. (2023a) estimated the PM2.5 removal 
capacity of nature-based green infrastructure and explored the impact of 
different landscape patterns on the removal capacity. Some studies 
(Corada et al., 2020; Abhijith & Kumar 2020) have also estimated the 
economic benefits of particulate matter reduction, further demon
strating the significant value of the i-Tree Eco model in urban forest 
management and policy-making.

These numerous studies (Jeong et al., 2023; Zhou et al., 2019) have 
primarily focused on estimating the effectiveness of PM2.5 removal and 
exploring the influence of different vegetation types and configurations 
(Wu et al., 2019). However, most of these studies are limited to specific 
points in time and lack systematic analysis of the seasonal variation in 
urban vegetation’s PM2.5 removal capacity. In reality, the dust retention 
capacity of vegetation varies significantly across seasons due to changes 
in climate and vegetation growth. Ignoring these temporal dynamics 
fails to provide a comprehensive understanding of the ability of urban 
vegetation to mitigate particulate matter. While some studies have 
examined changes in PM2.5 removal by vegetation over multiple years 
(Li et al., 2023a), they typically focus on long-term trends and do not 
reveal the specific impact of seasonal characteristics on vegetation’s 
pollution mitigation efficiency. In terms of spatial analysis, traditional 
land surface classification methods are typically based on land use and 
land cover (LUCC), for instance, categorizing urban areas into "resi
dential," "commercial," or "industrial" zones. Although this method 
provides basic physical characteristics, it does not fully capture the 
complex microclimatic variations within urban areas, especially when 
evaluating the role of vegetation in PM2.5 removal. In contrast, Local 
Climate Zones (LCZ) classification not only considers surface charac
teristics but also factors like building height and heat capacity, which 
influence microclimates. This makes LCZ more effective in reflecting the 
climatic heterogeneity across different urban areas. In this study, we 
utilize the LCZ classification to more accurately analyze the PM2.5 
removal performance of vegetation in various spatial environments. 
Although environmental variables such as humidity (Ryu et al., 2019), 
temperature (Jung et al., 2018), and precipitation have been acknowl
edged for their impact on removal capacity (Zhang et al., 2017; Yang 
et al., 2015), quantitative studies on how these factors affect removal 
efficiency remain scarce.

Therefore, this study uses Shanghai as a case study, applying i-Tree 
Eco model to estimate the reduction of PM2.5 by urban vegetation and 
analyze the spatial distribution and temporal variation of this reduction 
capacity throughout 2022. The objectives of this study are: 1) to provide 
a more accurate estimate of particulate matter removal using the dry 
deposition model, 2) to determine the spatial distribution and seasonal 
characteristics of vegetation’s removal capacity across different under
lying surfaces in Shanghai in 2022, and 3) to explore the impact of 
surface evapotranspiration on vegetation’s PM2.5 reduction capacity.

2. Materials and methods

2.1. Study area

Shanghai is located on the southeastern edge of the Yangtze River 
Delta (30◦40’~31◦53′N, 120◦51’~122◦12′E), where the Yangtze and 
Qiantang Rivers meet and flow into the East China Sea (Fig. 1). Except 
for a few eroded residual hills in the southwest, the entire area is a flat, 
low-lying plain, with an average elevation of around 4 m above sea 
level. Shanghai has a subtropical monsoon climate, with an average 
temperature of 15 ◦C and an annual precipitation of 969.8 mm in 2022, 
spread across 85 rainy days. The city’s greenery primarily consists of 
urban parks, street greenbelts, residential community green spaces, and 
suburban forests and wetlands, dominated by evergreen broad-leaved 
forests and mixed evergreen-deciduous forests. Due to its dense popu
lation and high vehicle numbers, PM2.5 pollution has been a major focus 
of Shanghai’s environmental management efforts. Particularly in 
autumn and winter, under adverse climatic conditions, PM2.5 concen
trations occasionally exceed standard limits, affecting the health of 
urban residents (He et al., 2022).

2.2. Data sources and processing

To estimate the removal of air pollutants by urban vegetation in 
Shanghai, we utilized a dry deposition model (Nowak et al., 2018; 
Nowak et al., 2006). This model integrates environmental data (e.g., air 
pollution and meteorological data) with vegetation data (e.g., urban 
vegetation cover and leaf area data). The basic data used in this study 
are summarized in Table S1. Leaf Area Index (LAI) and evapotranspi
ration (ET) data were obtained from MODIS products, provided by 
NASA’s Land Processes Distributed Active Archive Center (LP DAAC). 
MODIS LAI products are widely used in vegetation monitoring due to 
their high temporal and spatial resolution and continuous global 
coverage. Yan et al. (2021) evaluated the performance of MODIS and 
VIIRS LAI products across multiple years, demonstrating the stability of 
MODIS LAI products. On an urban scale, Imhoff et al. (2010) used 
MODIS LAI data to analyze the heat island effect in different urban bi
omes, showcasing the potential application of this dataset in urban 
microclimate studies. The spatial resolution of the LAI and ET data is 
500 m, and the temporal resolution is 8 days. Daily LAI and ET values 
were estimated based on relative imagery over these eight days, 
assuming that LAI and ET values remained consistent within this period. 
To align with subsequent PM2.5 data, the LAI and ET data were resam
pled to a 1 km resolution in ArcGIS. As a preliminary assessment, using 
1 km resolution data was intended to capture general trends and un
derstanding over a large area. Although a 1 km resolution may have 
certain limitations in urban areas, it provides a macroscopic perspective 
that helps identify overall trends and patterns. Numerous related studies 
(Zhang et al., 2022; Gaglio et al., 2022; Shen et al., 2022; Yin et al., 
2019) have shown that 1 km resolution data is feasible for using dry 
deposition models to study the PM2.5 removal by urban vegetation and 
can yield meaningful results.

PM2.5 data were obtained from the ChinaHighPM2.5 dataset (Geng 
et al., 2021; Xiao et al., 2022), a high-resolution, high-quality PM2.5 
dataset released by Dr. Wei Jing’s team at the University of Maryland in 
2021. This dataset integrates multiple satellite remote sensing sources 
and artificial intelligence technology, considering ground-based obser
vations, satellite remote sensing products, atmospheric reanalysis, and 
emission inventories to address the spatiotemporal variability of air 
pollution. The deposition velocity and resuspension rate of PM2.5 are 
related to wind speed. To improve the accuracy of deposition velocity 
parameters, we conducted experiments based on the indirect method 
proposed by Yin et al. (2019) using a smog chamber. The deposition 
velocity (Vd) was calculated using the following exponential decay 
model: 
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Vd =
V
LA

•
(
e− j•Δt − e− k•Δt) (1) 

where V (m3) is the volume of the smog chamber, LA (m2) is the total leaf 
area, j and k are the decay rate constants under non-leaf and leaf con
ditions, respectively, and Δt is the time interval for concentration 
measurements (set to 1 s in this study). In this study, j and k and were 
determined through fitting the exponential decay curves under non-leaf 
and leaf conditions, respectively. The decay rate constant j was found to 
be 0.0009612 s− 1, while k varied by vegetation type. Representative 
local vegetation types were sampled, including Cinnamomum camphora, 
Ligustrum lucidum, Magnolia grandiflora, Sabina chinensis, Podocarpus 
macrophyllus, Cedrus deodara, Pinus parviflora, Metasequoia glyptos
troboides, and various shrubs such as Euonymus japonicus ‘Aur
eomarginatus’, Rhaphiolepis indica, Photinia serratifolia, Ligustrum quihoui, 
Azalea, Ilex chinensis, and Pittosporum tobira. The results (Table S2) were 
further compared with deposition velocity data reported in other 
studies, particularly those conducted in Shanghai (Zhang et al., 2021; 
Liu et al., 2024). Our measurements for dense trees under wind speeds of 
2–4 m ⋅s− 1 showed general alignment with Zhang et al. (2021), though 
slight deviations were observed at higher wind speeds, with differences 
within 15%. For shrubs, our measured deposition velocities were 
moderately higher (by approximately 8–12%) compared to Liu et al. 
(2024). These differences may be attributed to variations in experi
mental conditions and the selection of vegetation types. Despite these 
discrepancies, the overall trends of our measurements are comparable to 
existing studies in Shanghai, suggesting consistency within the regional 
context.

Meteorological data, including wind speed and precipitation, were 
collected from the National Meteorological Information Center. The 
data consists of 3-min interval records from 11 meteorological stations 
across Shanghai from January 2022 to December 2022. Shanghai’s 
typical wind speed range is primarily between 0 and 6 m ⋅ s− 1 (Ge et al., 

2001). Using Python, we extracted the 3-min wind speed and rainfall 
data for 2022 and applied kriging interpolation to generate daily 
meteorological element maps. Specifically, we employed co-kriging 
(Goovaerts, 2000), which incorporates elevation as a covariate to ac
count for spatial variability. The kriging interpolation process was 
implemented using ArcMap 10.8. The semi-variogram model was 
selected as Gaussian, and the parameters (range, sill, nugget) were fitted 
to the data. The interpolation covered the spatial boundaries of 
Shanghai, and the resulting daily meteorological element maps were 
resampled to a 1 km unit size to match the subsequent raster 
calculations.

2.3. Local Climate Zone (LCZ) map

Local Climate Zones (LCZs) is a classification system used to describe 
urban and suburban surface cover characteristics and their impacts on 
local climate. This system was proposed by Stewart and Oke (2012), 
aiming to provide a standardized method for studying the effects of 
different urban environments on climate characteristics. LCZ divides the 
surface into various types, including different urban and natural sur
faces, each classified based on its structure, materials, and thermal 
properties influenced by human activities.

Compared to traditional Land Use and Land Cover Classification 
(LUCC) methods, a major distinction of the LCZ approach is its focus on 
the impact of surface types on urban microclimate, rather than merely 
their physical and visible characteristics. While LUCC methods empha
size the biophysical attributes of the surface, such as vegetation cover 
and terrain, LCZ classifies based on climate-related properties like 
thermal capacity, thermal conductivity, and humidity. Moreover, LCZ 
incorporates surface height information, which is particularly important 
in urban environments, as building heights influence wind speed, air 
convection, and dry deposition. This results in different LCZ types 
having varying impacts on air flow and pollutant dispersion. Liu et al. 

Fig. 1. Location of the study area.
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(2013) used remote sensing imagery to estimate the total above-ground 
vegetation biomass in different functional areas of Guangzhou and 
subsequently estimated the dust retention capacity of different func
tional areas and the city as a whole. Therefore, we selected the LCZ 
classification method to more accurately understand and quantify the 
specific impacts of urban surface characteristics on air quality. In this 
study, the classification of LCZ was performed using the World Urban 
Database and Access Portal Tools (WUDAPT) platform. The LCZ classi
fication result (Fig. 2) for Shanghai in 2022 were obtained using the 
Random Forest classification algorithm and Landsat 8 data. The corre
sponding classification accuracy was evaluated and presented using box 
plots.

2.4. PM2.5 dry deposition model

To estimate the amount of PM2.5 removed by vegetation during non- 
precipitation periods in Shanghai in 2022, as well as the corresponding 
removal rates, we referred to the dry deposition module (UFORE-D) of 
the i-Tree model. The hourly pollutant removal flux Fi,j (μg⋅ m− 2⋅ h− 1) 
for each pixel (area = 1 × 1 km) was calculated using the following 
equation: 

Fi,j =Vd,PM2.5 ⋅ LAIi,j ⋅ Ci,j ⋅
(
1 − ri,j

)
× 3600 (2) 

The deposition velocity of PM2.5, Vd,PM2.5 (m ⋅s− 1), represents the 
speed at which pollutants are deposited onto the leaf surface. This value 
is estimated based on literature and daily average wind speed. The term 
ri,j represents the resuspension rate of PM2.5 on the leaves for the i th 
pixel on the j th day. The concentration of PM2.5, Ci,j (μg⋅ m− 3), is for the i 
th pixel on the j th day. The Leaf Area Index (LAI), LAIi,j (m2/ m2), for the 
i th pixel on the j th day, indicates the leaf area per unit ground area. The 
model coefficient 3600 adjusts the flux units to (μg⋅m− 2⋅h− 1) to facilitate 
subsequent analysis.

Based on the following formula, the annual removal rate Qi (μg⋅ m− 2) 
at the pixel scale for urban vegetation can be estimated: 

Qi =
∑365

j=1
Fi,j⋅Ti,j (3) 

The term Ti,j represents the dry deposition time for pixel i on day j, 
which depends on the daily average precipitation. If the daily average 
precipitation exceeds 0.2 × LAIi,j mm (Nowak et al., 2013), it is assumed 
that all particles are washed off the leaves, reducing the dry deposition 
time to zero. Otherwise, the dry deposition time is assumed to be 24 h.

To calculate the total amount of PM2.5 removed by urban vegetation 
in Shanghai in 2022, the removal rate Qi is multiplied by the pixel area 
and then summed over the entire year. Here, n is the number of pixels, 
and A is the area of each pixel (1 × 1 km2): 

Total PM2.5 removal=
∑n

i=1
Qi⋅A (4) 

2.5. Seasonal and Trend Decomposition using Loess (STL)

In this study, we employed Seasonal and Trend Decomposition using 
Loess (STL) to analyze the temporal dynamics of vegetation’s PM2.5 
removal capacity. STL decomposes a time series into three distinct 
components (Bandara et al., 2021; He et al., 2021): trend (Tt), season
ality (St), and residuals (Rt), represented as: 

Yt =Tt + St + Rt (5) 

where Yt is the observed PM2.5 removal rate at time t, Tt reflects long- 
term trends, St captures periodic variations, and Rt represents short- 
term fluctuations or noise.

However, due to the complexity of PM2.5 formation processes, 
particularly secondary and tertiary reactions, the residual component 
may contain uncaptured dynamic characteristics, potentially affecting 
the accuracy of the overall decomposition (Arangio et al., 2016). 
Additionally, STL’s smoothing nature might attenuate extreme values, 
underestimating the impact of high-pollution events (Putrada et al., 
2023). To address these limitations, we implemented modifications to 

Fig. 2. Local Climate Zone in Shanghai (2022) and F1 Score Accuracy: The overall accuracy (OA) is 0.83, the overall accuracy for the urban LCZ classes only (OAu) is 
0.76, the overall accuracy of the built versus natural LCZ classes only (OAbu) is 0.98, and the weighted accuracy (OAw) is 0.97.

W. Yang et al.                                                                                                                                                                                                                                   



Environmental Pollution 369 (2025) 125800

5

the STL method. A random forest model was introduced to correct the 
original residuals (Rt), generating refined residuals (R*

t ) to better 
represent the dynamic characteristics. The correction is expressed as: 

R*
t = f(Rt) (6) 

where f( ⋅) denotes the random forest model designed to learn and adjust 
for the residual’s complex dynamics. Using the refined residuals, we 
updated the trend and seasonality components to ensure consistency 
with the corrected residuals. The updated formulas are: 

T*
t =Yt − St − R*

t , S*
t = Yt − T*

t − R*
t (7) 

These updates resulted in an optimized decomposition framework. 
The final decomposition model is expressed as: 

Yt =T*
t +S*

t + R*
t (8) 

This improved method ensures that the decomposed components 
accurately represent the underlying data. The updated trend (T*

t ) more 
accurately reflects long-term variations, the updated seasonality (S*

t ) 
better captures periodic fluctuations, and the refined residuals (R*

t ) 
incorporate dynamic features such as extreme events, improving the 
model’s robustness. The STL analysis was implemented using Python, 
with daily PM2.5 removal rates as input data. To reduce short-term 
fluctuations and highlight long-term trends, a rolling window of 7 
days was applied to smooth the data. This helped remove noise from 
short-term variations, making the underlying trend clearer. A Savitzky- 
Golay filter with a window size of 15 and a polynomial order of 3 was 
then applied to further smooth the data, effectively eliminating abrupt 
changes and small-scale noise. To capture seasonal patterns and varia
tions linked to vegetation phenology and meteorological changes, a 
seasonal decomposition was performed using the STL method with a 
period of 30 days. The robust mode was enabled to mitigate the effects of 
outliers, enhancing the stability of the decomposition.

3. Results

3.1. Geospatial patterns of PM2.5 mitigation by urban vegetation

The 2022 forest resource monitoring results for Shanghai indicate 
that by the end of 2022, the city’s forest coverage rate had reached 
18.49%. Shanghai plans to increase the forest coverage rate to 23% by 
2035. The majority of Shanghai’s forests are concentrated in suburban 
areas, with suburban forests accounting for 97% and urban core areas 
accounting for 3%. The government departments of the nine suburban 
districts have all placed significant emphasis on afforestation and 
greening, exceeding the targets set for the 14th Five-Year Plan. Among 
these, Chongming District has made the largest contribution to the city’s 
forest coverage rate by promoting the construction of a world-class eco- 
island. The 2022 survey indicated that Chongming District’s forest 
(including trees, bamboo, and special shrub forests) coverage rate had 
reached 30.05%.

In 2022, urban vegetation in Shanghai removed a total of 835 tons of 
PM2.5, demonstrating its significant role in improving air quality. The 
PM2.5 removal flux averaged 0.51 ± 0.03 g ⋅m− 2⋅year− 1, ranging from 
0.08 to 1.12 g⋅m− 2. The PM2.5 removal rate varied across the city, with 
an average rate of 11.62 ± 3.31%, a minimum of 4.09%, and a 
maximum rate of 21.7%.

Fig. 3 shows the spatial distribution estimate of PM2.5 removal ca
pacity (g⋅m− 2) by vegetation in Shanghai for the year 2022. The PM2.5 
removal capacity of vegetation exhibits spatial heterogeneity, with a 
noticeable gradient change from the urban core to the suburban areas. 
The central urban area shows a lower PM2.5 removal capacity, whereas 
certain suburban areas display higher removal rates. The regions with 
the highest PM2.5 removal rates are concentrated in the western, 
southern, and Chongming Island areas of Shanghai, corresponding to 

Qingpu District, Jinshan District, Fengxian District, and Chongming 
District, respectively. These areas have extensive green spaces. From the 
local climate zone map of Shanghai (Fig. 2), it can be seen that areas 
such as Yangpu District, Hongkou District, Jing’an District, Putuo Dis
trict, Changning District, Xuhui District, Huangpu District, the water
front of Pudong New Area along the Huangpu River, Baoshan District, 
and the southeastern part of Jiading District are mostly covered by mid- 
to high-rise buildings, with low vegetation density, resulting in signifi
cantly reduced PM2.5 removal amounts.

3.2. Contributions of the PM2.5 removal capacity of LCZs

The results of this study reveal the differences in PM2.5 removal ca
pacities across various LCZs and their contributions to urban environ
mental purification. Among building land types, Open Lowrise has the 
largest area proportion, accounting for 17.35%. The three compact 
building types: Compact highrise, Compact midrise and Compact low
rise, accounting for 0.53%, 1.25%, and 2.82%, respectively. Large 
Lowrise is almost non-existent, with only 0.03% coverage (Table 1). 
Among all LCZ types, Dense Trees made the highest contribution to 
PM2.5 removal, amounting to 208.28 tons. The green space type with the 
largest area, Bush/Shrub, followed closely with a removal amount of 
194.81 tons.

Fig. 4 further illustrates these findings. Significance letters are added 
above the boxplots of different LCZ types, representing statistical 
groupings based on Tukey HSD test (p < 0.05). Groups sharing the same 
letter have no significant differences, while groups with different letters 
show significant differences. Detailed statistical results are provided in 
Table S4. The results show that Bush/Shrub, Compact lowrise, Large 

Fig. 3. Spatial distribution of PM2.5 removal by urban vegetation in 
Shanghai City.
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lowrise, and Scattered Trees have no significant differences in PM2.5 
removal rates (sharing letter “a”), whereas Dense Trees, Heavy industry, 
and other built-up types (such as Compact highrise and Compact mid
rise) exhibit significant differences. Overall, vegetated types, such as 
Dense Trees and Bush/Shrub, demonstrate more stable PM2.5 removal 
rates and significantly higher removal rates compared to some built-up 
types. In contrast, Large lowrise shows greater variability in removal 
rates due to differences in building height and density. Notably, the 
heavy industrial areas exhibit the highest removal efficiency. Many 
studies agree that vegetation effectively captures and adsorbs airborne 
particulates, thus reducing PM2.5 concentrations. However, the dust 
retention capacity of vegetation is limited (Sun et al., 2020; Liu et al., 
2013). When PM2.5 concentrations are excessively high, the adsorption 
capacity of vegetation becomes saturated (Wróblewska et al., 2021), and 
the dry deposition model does not account for this limitation. This ex
plains why heavy industrial areas have the highest removal efficiency. 
Nonetheless, this high efficiency does not imply that vegetation can 
maintain high removal efficiency in such areas over the long term. 

Instead, the dust retention capacity of vegetation quickly decreases 
under high pollution conditions, necessitating frequent vegetation 
replacement, tree gardening to maintain plant health, leaf washing to 
remove accumulated dust, and adding trees to enhance vegetation 
coverage. Excluding the impact of PM2.5 concentration by heavy in
dustrial activities, the order of removal efficiency should be Dense Trees 
> Open low-rise > Large low-rise > Bush/Shrub > Scattered Trees >
Others.

3.3. Temporal dynamics of PM2.5 mitigation trends

To explore the temporal variation and seasonal differences in PM2.5 
removal flux, we applied Seasonal and Trend decomposition using Loess 
(STL) to the original removal sequence. As shown in Fig. 5, the original 
series was decomposed into trend, seasonal, and residual components. 
The trend plot reveals the long-term changes in the data and highlights a 
"double peak" pattern: the removal flux begins to rise rapidly in March 
and April following the winter season, followed by a brief decline after 
spring. Another rise starts in July, peaking in August. To validate the 
statistical significance of the double peak pattern, we employed two 
complementary statistical methods. The t-test, a parametric test, eval
uates whether the mean PM2.5 removal flux during the double peak 
periods differs significantly from that during other periods under the 
assumption of normality. The Mann-Whitney U test, a non-parametric 
alternative, assesses whether the distributions of the two groups differ 
without assuming normality. Both methods confirmed that the PM2.5 
removal flux during the double peak periods was significantly higher 
than that of other periods, with p < 0.001. These statistical results are 
displayed in Fig. 5, alongside the marked positions of the double peaks, 
to provide a clear and rigorous validation of the observed pattern.

The PM2.5 removal flux exhibits significant fluctuations within 
certain months (e.g., May and September), while it remains relatively 
stable in other months (e.g., February and July) as shown in Fig. 6a. The 
violin plots for January to April (transition from winter to spring) 
display a wide bottom, particularly in February and March, indicating 
many low flux values during these months. The violin plots for May and 
June (late spring to early summer) are wider, especially above the me
dian, indicating better PM2.5 removal performance during this period. 

Table 1 
Distribution and PM2.5 mitigation contributions of LCZs.

LCZs Area Percentage 
(%)

Area 
(km2)

Pollution Removal 
(tons)

1: Compact highrise 0.53 32.47 3.42
2: Compact midrise 1.25 76.69 4.07
3: Compact lowrise 2.82 173.10 22.79
4: Compact Open 

highrise
9.00 553.12 41.17

5: Open midrise 6.04 371.04 23.00
6: Open lowrise 17.35 1066.08 173.68
7: Lightweight lowrise 9.07 557.20 34.82
8: Large lowrise 0.03 1.74 0.65
9: Sparsely built 0.67 41.04 5.51
10: Heavy industry 1.73 106.08 55.49
11: Dense Trees 10.01 615.22 208.28
12: Scattered Trees 1.63 100.32 63.42
13: Bush/Shrub 36.50 2242.32 194.81
14: Low Plants 0.43 26.31 4.14

Note: "Bare Rock/Soil" and "Water" are not included in the statistics.

Fig. 4. PM2.5 mitigation across LCZs: distribution patterns of mitigation effectiveness. Letters above boxes indicate statistical groupings based on Tukey HSD test (p 
< 0.05). Groups sharing the same letter are not significantly different.
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Furthermore, Fig. 6b shows that high removal windows are concen
trated in April–May and July–August, with an average removal flux of 
71.6 μg m2⋅h⁻1. During summer, the vigorous growth of vegetation, 
along with strong photosynthesis and transpiration, significantly en
hances PM2.5 removal, resulting in a higher average removal flux. In 
contrast, the removal effectiveness is weaker in autumn and winter, with 
average removal fluxes of 49.07 μg m2⋅h⁻1 and 44.80 μg m2⋅h⁻1, 
respectively (Fig. 6d). Fig. 6c illustrates the broad fluctuations in 
removal flux during spring and autumn, whereas summer displays a 
more concentrated distribution. Winter values show a relatively wide 
distribution, particularly around the median, indicating a higher vari
ability in PM2.5 removal effectiveness by vegetation during the winter 
season.

3.4. Impact of evapotranspiration on PM2.5 reduction

Fig. 7a illustrates the relationship between evapotranspiration and 
the PM2.5 reduction rate, with error ellipses (3 standard deviations) used 
to show the data distribution. The ellipses clearly reflect the concen
tration trend of the data, with point density decreasing as it moves 
further from the center. The red dot represents the mean value. In the 
error ellipse chart, the more elongated the ellipse, the stronger the 
correlation, and the tilt direction indicates the correlation direction. The 
rightward tilt of the ellipse suggests a positive correlation between the 
two variables, where an increase in evapotranspiration corresponds with 
an increase in the PM2.5 reduction rate. Regression analysis between 
evapotranspiration and the reduction rate shows a moderate correlation, 
with an r of 0.52 and an R2 of 0.28. This relatively low R2 is primarily 
due to the study’s focus on the singular effect of evapotranspiration on 
PM2.5 reduction, without considering other potential environmental 
variables.

Despite the low R2, the correlation between evapotranspiration and 

PM2.5 reduction remains significant, with a p less than 0.01, indicating 
statistical significance. To further investigate the nuanced effects of 
evapotranspiration on PM2.5 removal, this study employed an equal- 
interval division method to divide evapotranspiration into five in
tervals, capturing the variation in PM2.5 reduction across different 
evapotranspiration levels. The specific ranges for each interval are: Q1 
(16.39 mm–38.20 mm), Q2 (38.20 mm–42.68 mm), Q3 (42.68 
mm–46.59 mm), Q4 (46.59 mm–50.64 mm), and Q5 (50.64 mm–73.99 
mm). From the density distribution plot in Fig. 7b, a complex relation
ship between evapotranspiration and PM2.5 reduction can be observed. 
The high-density region is concentrated in the medium evapotranspi
ration range (38 mm–50mm), with a PM2.5 reduction rate around 0.6 
g⋅m− 2, indicating that removal efficiency is both significant and stable in 
this range. In contrast, data points in the lower (<38 mm) and higher 
(>50 mm) evapotranspiration ranges are more scattered, with reduced 
density, suggesting greater variability in removal efficiency and some 
degree of uncertainty.

To more accurately assess the changes in removal efficiency across 
different evapotranspiration intervals, we calculated the marginal effect 
for each interval by computing the mean PM2.5 reduction rate and the 
differences between adjacent intervals (Table 2). The marginal effect 
was highest in the Q2 interval (38.20 mm–42.68 mm), reaching 0.67, 
indicating that the increase in evapotranspiration had the most signifi
cant effect on PM2.5 reduction within this range. However, as evapo
transpiration increased further, the marginal effect gradually declined in 
the Q3 to Q4 intervals (42.68 mm–50.64 mm), dropping to 0.17 and 
0.09, respectively, showing a slowing rate of improvement in removal 
efficiency. In the Q5 interval (50.64 mm–73.99 mm), the marginal effect 
slightly rebounded to 0.28, suggesting that other environmental factors 
may have contributed to the PM2.5 removal efficiency under higher 
evapotranspiration conditions. This could be related to stomatal regu
lation, where stomata begin to close as evapotranspiration exceeds a 

Fig. 5. Time series of PM2.5 removal rate from vegetation, decomposed into trend, seasonal patterns, and residuals using STL. The trend shows a significant increase 
during spring and summer peaks. Statistical significance was tested using t-test and Mann-Whitney U test (p < 0.001).
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certain threshold, reducing particle capture efficiency. However, under 
certain environmental conditions, factors such as humidity or stomatal 
mechanisms may enhance removal efficiency once again.

4. Discussion

4.1. PM2.5 removal and spatiotemporal variation

Our study estimates the removal of PM2.5 by urban vegetation in 
Shanghai using the UFORE-D module, with a total annual removal of 
835 tons and an average rate of 0.51 g ⋅m− 2⋅year− 1. In a field study 
conducted by Su et al. (2020) in Taiwan, similar results were obtained. 

Fig. 6. Monthly distribution of PM2.5 concentration reduction (a) and mean and trend of monthly PM2.5 concentration reduction (b) and seasonal distribution of 
PM2.5 concentration reduction (c) and mean and trend of seasonal PM2.5 concentration reduction (d).

Fig. 7. The positive correlation between evapotranspiration and PM2.5 reduction is illustrated in (a), while (b) shows the density distribution, highlighting the 
concentration of reduction at moderate evapotranspiration levels.
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They validated the i-Tree Eco model estimates through on-site mobile 
monitoring and found that the PM2.5 removal rates by vegetation ranged 
from 2.51% to 35.57%, demonstrating the reliability of the UFORE-D 
module in estimating PM2.5 removal. Liu et al. (2020) used the 
UFORE-D dry deposition module and GeoDetector to estimate the 
spatiotemporal patterns in the Fenwei Plain of China. Their results 
showed that the average PM2.5 removal rates by vegetation in 2000, 
2010, and 2021 were 0.186%, 0.243%, and 0.435%, respectively, which 
are similar to the findings of this study. In Shanghai, a study by Zhang 
et al. (2021) estimated that urban forests removed approximately 874 
tons of PM2.5 in 2017, which is comparable to the 835 tons estimated in 
this study for 2022. The observed differences may be attributed to 
variations in vegetation coverage and meteorological conditions be
tween the two time periods. Additionally, the study highlighted seasonal 
variability, with the highest PM2.5 removal in summer, and spatial 
variability, where suburban areas contributed more significantly than 
urban centers. These seasonal and spatial patterns are consistent with 
the trends observed in this study.

Vegetation has a significant mitigating effect on air pollution, as 
confirmed by many studies (Dwijendra et al., 2023; Zhai et al., 2022). 
These effects of vegetation have been evaluated using a variety of 
models and methods, each with distinct assumptions and applicable 
scales. The UFORE module is widely used for quantifying urban vege
tation’s ecosystem services due to its computational efficiency and 
relatively simple parameterization, making it suitable for large-scale 
assessments (Nowak et al., 2013). However, it simplifies certain pro
cesses, such as assuming uniform deposition velocities and leaf area 
index, which may not fully reflect the complexity of deposition dy
namics in heterogeneous urban environments. The current limitation of 
the model’s resolution primarily comes from the wind speed data. Wind 
speed is a key factor influencing the model’s core parameter, deposition 
velocity, especially in densely built urban areas where the layout of 
streets and buildings significantly affects airflow. Finer-resolution wind 
speed data can more accurately reflect local airflow patterns, particu
larly in areas with dense buildings and complex street layouts, thereby 
improving the estimation of deposition velocity and further optimizing 
the assessment of PM2.5 removal capacity. Meanwhile, increasing the 
spatial resolution of the Leaf Area Index (LAI) data can also significantly 
improve the model’s accuracy. Higher-resolution LAI data can more 
precisely depict vegetation coverage in different urban areas, particu
larly in regions with complex green space distribution or limited 
greenery, allowing the model to more accurately evaluate the contri
bution of various green spaces to PM2.5 removal. In contrast, the 
ENVI-met model provides high-resolution simulations by incorporating 
detailed microclimatic processes, such as wind speed, temperature, and 
pollutant dispersion, which are particularly effective for small-scale 
studies (Bruse and Fleer, 1998). Yet, its high computational cost often 
restricts its application to limited areas. To address this limitation, 
future research could integrate the strengths of both models by 
combining ENVI-met’s microclimatic simulations with i-Tree Eco’s 

ecological benefit calculations. Specifically, microclimate data gener
ated by ENVI-met, including wind speed, temperature variations, and 
pollutant concentrations, can be used as input to optimize i-Tree Eco’s 
parameters, particularly in environments with complex urban layouts 
and dynamic weather conditions. This integration would enhance the 
accuracy of ecological assessments, such as particulate matter retention 
and overall air quality improvement, by providing a more nuanced 
understanding of how vegetation interacts with its environment. Addi
tionally, combining these models would enable cross-scale analyses, 
from small-scale simulations of individual parks or street canyons to 
large-scale urban green space planning, offering a more comprehensive 
and scalable approach to urban vegetation management. This combined 
framework would allow for a more precise evaluation of the spatial and 
temporal dynamics of vegetation’s role in mitigating urban environ
mental challenges, such as air pollution and heat island effects.

Fig. 5 illustrates the seasonal dynamics of vegetation’s PM2.5 
removal flux, characterized by a distinct double-peak pattern in spring 
and summer. These seasonal variations are primarily influenced by a 
combination of vegetation activity and atmospheric conditions. In 
spring (March to April), the first peak coincides with the rapid recovery 
of vegetation coverage. The increased surface area significantly en
hances the interception and dry deposition of particles, leading to a 
marked rise in removal flux. Additionally, the elevated relative humidity 
during spring enhances the hygroscopic growth of particles, facilitating 
their deposition on vegetation surfaces. This phenomenon has been 
demonstrated in studies of Shanghai, where humid conditions signifi
cantly promote PM2.5 removal, providing a reasonable explanation for 
the spring peak (Liu et al., 2018). The second peak in summer (July to 
August) aligns with the annual maximum vegetation coverage, offering 
an expanded surface area for particle deposition. Concurrently, elevated 
temperatures and strong convective conditions result in higher particle 
concentrations in the atmosphere, particularly due to the intensified 
formation of secondary particles such as nitrates and sulfates. This 
process, driven by accelerated photochemical reactions, creates favor
able conditions for vegetation to capture these particles (Qiao et al., 
2014). However, this double-peak pattern also highlights the temporal 
mismatch between vegetation’s removal capacity and PM2.5 emissions. 
Winter represents the period of highest PM2.5 concentrations (Xiao et al., 
2015), primarily driven by emissions from northern heating activities, 
while vegetation coverage and activity are significantly reduced during 
this time, resulting in a noticeable decline in filtering capacity.

4.2. Role of evapotranspiration in enhancing PM2.5 mitigation

Previous studies have shown that various environmental factors in
fluence leaf dust retention and the pollution removal efficiency of 
vegetation (Li et al., 2023b). Precipitation significantly enhances PM2.5 
removal efficiency by washing particles off leaves and reducing the 
chance of resuspension, particularly during high-rainfall periods. Wind 
speed also plays a crucial role by facilitating particle deposition and 
increasing air exchange near leaf surfaces, which enhances the effec
tiveness of vegetation in capturing PM2.5 (Pace & Grote, 2020). Beyond 
precipitation and wind, other meteorological factors such as tempera
ture, humidity, and atmospheric pressure have been found to signifi
cantly impact PM2.5 concentrations. For instance, increased humidity 
raises leaf surface wetness, promoting particle adhesion, while high 
temperatures accelerate evapotranspiration, indirectly improving par
ticle retention (Yan et al., 2020; Zhang et al., 2016). Furthermore, the 
combined effects of meteorological factors often exhibit nonlinear and 
lagged relationships. For example, the influence of rainfall and wind on 
PM2.5 reduction may persist for several days, while humidity and tem
perature effects often peak rapidly before diminishing (Yang et al., 
2021). These interactions highlight the complexity of environmental 
influences on PM2.5 removal. This study focuses on evapotranspiration 
as a central mechanism, given its direct role in regulating 
leaf-atmosphere interactions and its potential to interact with other 

Table 2 
Evapotranspiration and PM2.5 reduction, showing mean reduction, standard 
deviation, and marginal effect for each interval.

Evapotranspiration 
interval

Mean PM2.5 

reduction (g⋅m− 2)
Standard 
deviation

Marginal 
effect

Q1 (16.39 mm–38.20 
mm)

0.487970 0.141595 –

Q2 (38.20 mm–42.68 
mm)

0.612881 0.122199 0.667848

Q3 (42.68 mm–46.59 
mm)

0.642798 0.133918 0.165023

Q4 (46.59 mm–50.64 
mm)

0.660048 0.148857 0.086149

Q5 (50.64 mm–73.99 
mm)

0.722282 0.160557 0.284249
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meteorological factors to enhance particle retention (Chen et al., 2020; 
Han et al., 2020).

Our experiment also found that while there is a significant positive 
correlation between evapotranspiration and removal efficiency, changes 
in evapotranspiration do not always align with changes in PM2.5 
removal rates. In the moderate evapotranspiration range (40–50 mm), 
removal efficiency reached a relatively high and stable level (Fig. 7b), 
indicating that evapotranspiration has the most pronounced effect on 
PM2.5 removal within this range. By significantly increasing local at
mospheric humidity, evapotranspiration creates favorable conditions 
for the hygroscopic growth of fine particles. Higher humidity enlarges 
particle diameter and enhances deposition velocity, facilitating their 
deposition onto leaf surfaces. This humidity effect not only optimizes 
particle capture conditions around vegetation but also becomes partic
ularly pronounced in high-humidity environments (Ebrahimian et al., 
2019). At the same time, evapotranspiration directly influences particle 
capture through stomatal regulation. Under moderate evapotranspira
tion, stomata remain open, enhancing particle deposition efficiency. 
However, when evapotranspiration exceeds a certain threshold, plants 
may partially or completely close their stomata to maintain water bal
ance, reducing further particle capture (Kool et al., 2014). Studies have 
demonstrated that changes in stomatal conductance play a critical role 
in determining the contribution of evapotranspiration to particle cap
ture (Rosenberg et al., 1989), further highlighting the importance of 
stomatal dynamics in this process. Additionally, evapotranspiration 
significantly impacts particle transport efficiency by altering aero
dynamic conditions around leaf surfaces. By reducing boundary layer 
thickness, evapotranspiration lowers resistance to particle transport, 
enhancing deposition efficiency. This boundary layer dynamic is 
particularly critical in low-wind-speed environments, where evapo
transpiration improves local airflow exchange and creates more favor
able conditions for particle capture (Cascone et al., 2019). However, as 
evapotranspiration increased, the improvement in removal efficiency 
diminished, showing a clear marginal effect. In the 42–50 mm range, the 
effect weakened noticeably, and beyond 50 mm, this decline became 
more pronounced. This trend suggests that excessive evapotranspiration 
leads to a saturation point, beyond which further increases do not 
significantly enhance removal efficiency. This may be due to stomatal 
behavior, as excessive evapotranspiration reduces the vapor pressure 
deficit (Xu et al., 2016), prompting stomata to partially or completely 
close, thereby limiting PM2.5 capture efficiency.

4.3. Implications and uncertainties

This study quantitatively estimated the capacity of urban vegetation 
to remove PM2.5, emphasizing its key role in improving urban air 
quality. Using Shanghai as a case study, the i-Tree Eco model was 
applied to assess vegetation’s PM2.5 removal capacity across different 
periods and Local Climate Zones (LCZs) in 2022. Results showed that 
vegetation reduces PM2.5 through dry deposition, and evapotranspira
tion significantly enhances removal efficiency. However, this effect di
minishes beyond 50 mm. These findings not only contribute to a 
comprehensive understanding of the role of vegetation in air pollution 
control but also offer specific guidance for the development and man
agement of future urban green infrastructure. Despite the achievements 
of this study, there are still several limitations that need to be addressed 
in future research.

First, model limitations are a key issue. While this study employs the 
i-Tree Eco model to estimate PM2.5 removal by urban vegetation, we 
acknowledge its limitations in capturing the detailed effects of urban 
micro-scale features, such as varying building heights, street canyon 
effects, and local airflow dynamics. These micro-scale processes can 
influence PM2.5 transport and deposition but are beyond the spatial 
resolution and functional scope of the i-Tree Eco model. To complement 
this limitation, micro-scale models such as ENVI-met offer an alternative 
approach for simulating detailed urban environments. ENVI-met 

integrates three-dimensional airflow, pollutant dispersion, and vegeta
tion interactions, making it suitable for small-scale studies, such as 
street-level analysis. However, due to its high computational cost and 
focus on localized areas, ENVI-met is not ideal for large-scale regional 
assessments, which remain the primary strength of i-Tree Eco. Future 
studies could explore combining both approaches: using i-Tree Eco for 
regional-scale evaluations and ENVI-met for micro-scale refinements to 
achieve a more comprehensive understanding of vegetation’s role in 
mitigating PM2.5 pollution across different spatial scales. Second, this 
study does not explicitly account for the vertical distribution of PM2.5, 
which represents a limitation. Existing studies on vertical distribution 
often rely on atmospheric models (e.g., WRF-Chem) or lidar-based ob
servations. While these methods excel at simulating vertical variations, 
their computational complexity and data requirements have limited 
their widespread application in large-scale urban vegetation studies. 
The PM2.5 data used in this study primarily represent surface-level 
concentrations, which are suitable for large-scale analysis. However, 
vertical variations may influence deposition velocities and removal ca
pacity. Future research should incorporate high-resolution vertical 
profiles or multilayer atmospheric models to further enhance the accu
racy of PM2.5 removal estimates by urban vegetation. Finally, we did not 
sufficiently account for the seasonal variation in vegetation character
istics, particularly how the growth and senescence cycles of plants (such 
as leaf emergence, maturation, and leaf drop) may influence their par
ticulate matter (PM) removal capabilities. The growth and maturation of 
leaves during the spring and summer seasons likely enhance the plant’s 
ability to capture and retain particulate matter due to increased leaf area 
and more active photosynthesis. However, during the fall and winter 
seasons, as plants enter dormancy and lose their leaves, the PM removal 
efficiency of vegetation may decrease significantly. Previous studies 
have shown that plant foliage in active growth phases is more effective 
at trapping particulate matter, while the reduction in leaf area during 
the autumn and winter leads to diminished removal efficiency (Wang 
et al., 2013). Additionally, the leaf surface characteristics, such as waxy 
coatings, change with the seasons, further influencing the plant’s ability 
to capture particulates. Due to the scope of this study and its limited 
temporal design, we were unable to fully assess the potential impact of 
seasonal changes in vegetation characteristics on particulate matter 
removal. Future research could incorporate seasonal variations into the 
analysis framework to more accurately evaluate the role of vegetation in 
air purification throughout the year, further enhancing our under
standing of its contribution to improving urban air quality.

5. Conclusions

This study aimed to assess the removal effect of urban vegetation on 
PM2.5 by combining ground station data with remote sensing data and 
using the i-Tree model for dry deposition estimation. Based on the basic 
removal effects obtained, the contributions of different LCZ types were 
statistically analyzed. The study examined the variation in removal flux 
throughout the year and its seasonal characteristics, and explored the 
impact of surface evapotranspiration on the PM2.5 removal by vegeta
tion. The results estimate that urban vegetation significantly reduces 
PM2.5, with a total removal of 835 tons in 2022, an average removal rate 
of 0.51 g ⋅m− 2⋅year− 1 per unit leaf area, and an average air quality 
improvement of 4.07%. Different LCZ types contributed differently to 
the removal amount, with Dense Trees > Open Lowrise > Large Lowrise 
> Bush/Shrub > Scattered Trees > Others. Considering both removal 
amount and rate, Open Lowrise demonstrated significant dust retention 
potential among the surface types. Its low building density and ample 
open spaces provide an optimal environment for dust retention pro
cesses. Additionally, the PM2.5 removal flux by vegetation exhibited a 
"double peak" pattern, with a rapid increase in removal flux observed in 
March and April after winter, a brief decline after spring, another rise 
starting in July, and a peak in August. The removal flux also displayed 
clear seasonal characteristics, with higher fluxes in spring and summer 
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and lower fluxes in winter. By analyzing the relationship between 
evapotranspiration and PM2.5 removal rate, we found that an increase in 
evapotranspiration significantly enhances the PM2.5 purification effect 
of vegetation. However, this improvement does not continue to rise with 
further increases in evapotranspiration.
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