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Abstract

CrossMark

RGB-based methods have certain disadvantages because they lack 3D information and cannot
cope with the pose estimation problem in cluttered scenes. Therefore, we propose a region-level
pose estimation network that uses RGB-D images. We first extracted the objects’ color features
and geometric features by convolutional neural networks (CNN) and PointNet, respectively, and
then performed feature fusion. The fused features were fed into a region-level feature extraction
network to obtain the region-level features, which extracted the local geometry features from the
point cloud and learned the point set’s semantic information. We used the output of the
region-level feature extraction network to perform region-level pose estimation, then selected
the pose with the highest confidence level as the output and iteratively optimized the pose to
obtain the final results. The experimental results showed that the proposed solution performed
well on the LINEMOD data set, which verified the effectiveness of the proposed method in the
pose estimation problem and the algorithm’s robustness in severely cluttered scenes.

Keywords: object pose estimation, point cloud, region-level feature, feature fusion,

iterative optimization

(Some figures may appear in colour only in the online journal)

1. Introduction

The application of several techniques are based on the res-
ults of 6D pose estimation, including robotic manipulation [1],
autonomous driving [2], and augmented reality [3]. In most
realistic scenes, the pose estimation algorithm needs to be
able to deal with objects of various shapes and textures, and
have sufficient robustness under the circumstances of cluttered
scenes, sensory noise, and changing illumination conditions.
RGB-based methods [4-6] are extremely sensitive to occlu-
sion and cannot be applied to the pose estimation problem in
cluttered scenes. The emergence of the RGB-D camera has

* Author to whom any correspondence should be addressed.
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enabled great progress in pose estimation methods for texture-
less objects, which are more accurate than the methods based
solely on RGB data [7]. Compared with RGB images, RGB-D
images contain depth information. By converting this inform-
ation into point clouds, we can obtain geometric information
describing the spatial geometric structure of objects, which can
lead to cursory position information on objects and is more
suitable for cluttered scenes. Therefore, we can use RGB-D
images to obtain the color information and geometric inform-
ation of the object, then fuse them, and finally design a region-
level feature extraction network to extract the region-level
information for pose estimation. This method makes full use
of the color and geometric information of the object and per-
forms region-level estimation, which can effectively cope with
cluttered scenes. The fusion of features and the design of the

© 2023 IOP Publishing Ltd
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region-level feature extraction network are the two most crit-
ical technical points in this method.

For texture-rich objects, traditional 2D-3D correspondence
methods are commonly used for pose estimation [8]. Three-
dimensional models of the objects are projected from different
perspectives and several RGB image templates are obtained.
At the same time, the 2D-3D correspondence between the 3D
points of the model and the 2D pixels of the RGB images
is established. After capturing the RGB image of an object
from a single perspective, the feature points, such as scale-
invariant feature transform (SIFT) [9], speeded-up robust fea-
tures (SURF) [10], and Oriented FAST and Rotated BRIEF
(ORB) [11], can be extracted from the image, and this image
is matched with template images to select the template image
with the highest matching ratio. Afterwards, the Perspective-
n-Point (PNP) [12] algorithm is applied to calculate the cur-
rent pose according to the established 2D-3D correspondence.
These methods become less effective in textureless scenarios.

With the development of deep learning and its extensive
application in the fields of image classification and object
detection, researchers have begun to introduce deep learning
into the field of pose estimation. These approaches include
two main categories. The first category uses RGB images as
the input data and directly obtains the 6D pose of the object
with convolutional neural networks (CNNSs), such as PoseNet
[13], PoseCNN [14], etc. However, these methods need the
hyperparameters to be accurately selected in the loss function
to realize more effective detection. The other category takes
RGB-D images as the data source, and estimates the 6D pose
of the object with the fused RGB-D data. Taking depth inform-
ation as the fourth channel of RGB images, Michel et al [15]
fused RGB-D data and processed the data with a CNN. Wang
et al [16] put forward the DenseFusion network, which first
converted a depth map into a point cloud, extracted the geo-
metric features with the PointNet [17] network, then fused the
color features with the geometric features, and finally estim-
ated the object’s pose. Although this method takes account of
both the color information and the depth geometry informa-
tion of the image, it shows poor ability to extract the regional
features because feature extraction based on PointNet is lim-
ited to a single point of the point cloud data. The perform-
ance of pose estimation with these features is not satisfactory
in severely cluttered scenes.

In this study, we proposed a pixel-level feature fusion net-
work and a region-level feature extraction network that can
thoroughly utilize the color information and depth geometry
information from RGB-D images and obtain a region-level
feature representation for region-level pose estimation. The
method first uses a CNN to extract the color features of the
image, then fuses the color data with the point cloud data pro-
cessed by PointNet. We used a region-level feature extraction
network to obtain region-level features for region-level pose
estimation. This region-level feature extraction network can
form a graph structure by establishing the topology between
points and learning the semantic information of the point set by
dynamically updating the graph structure between the layers
to obtain region-level features with strong expressive power.
The inspiration behind this method mainly came from two

sources. One is that humans can perceive objects through col-
ors and 3D information. The other is that we can distinguish
an object’s pose by its local features [18]. On the basis of these
two facts, we fused the color information and 3D point cloud
information to create a network with a real 3D scene. The real
3D scene was divided into several regions to extract the fea-
tures of each region, with the aim of carrying out region-level
pose estimation. We then outputted the region-level pose pre-
diction with the highest confidence. Finally, a pose optimiza-
tion module was used to improve the accuracy. In this scheme,
the model we used can make full use of objects’ color, depth
information, and local features, which is of great significance
for pose estimation in severely cluttered scenes. The experi-
mental results on the ModelNet40 [19], ShapeNet [20], Stan-
ford 3D indoor scene (S3DIS) [21], and LINEMOD [22] data
sets demonstrated that our network performs well at local fea-
ture extraction and pose estimation.
In summary, the contributions of this work are as follows:

(a) We proposed a network which can fuse the color features
and depth point cloud features of RGB-D images. The net-
work merges the color features and the depth point cloud
features into a single point cloud, which can yield dense
and more efficiently fused features.

(b) The fusion features were divided into regions and then
region-level feature extraction was performed to obtain
region-level features to cope with the problem of pose
estimation in severely cluttered scenes. A region-level fea-
ture extraction network was proposed, which can learn
the semantic information of the fused features better
and obtain more expressive region-level features than
PointNet++. We utilized this scheme to carry out pose
estimation.

(c) The region level feature extraction proposed in this study
was verified to outperform PointNet++ and dynamic
graph CNN (DGCNN) on the ModelNet40, ShapeNet, and
S3DIS data sets, and excellent results were obtained on the
LINEMOD data set.

2. Related work

2.1. RGB-based methods

The most popular RGB-based methods [4, 6, 22-26] attempt
to build 2D-3D correspondences between the 2D image pixels
and 3D mesh vertexes, which are then leveraged to calcu-
late the 6D pose through a perspective—n—point method [12].
The 2D-3D correspondences are either sparse or dense. For
instance, pixel-wise voting network (PVNet) [23] regresses
pixel-wise vectors pointing to the key points and uses these
vectors to vote for the key points’ locations. HybridPose [25]
utilizes a hybrid intermediate representation to express differ-
ent geometric information in the input image, including the
key points, edge vectors, and symmetry correspondences. Hu
et al [27] introduced a deep architecture that takes a group of
candidate correspondences for each 3D key points as input,
directly returning to the 6D pose.
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2.2. Voting-based methods

Where there is occlusion in complex scenes, only local inform-
ation about the object can be acquired, which limits the accur-
acy of pose estimation. The voting-based methods aim to
obtain an object’s pose estimation results by voting on the
pose of each image patch, and these methods perform well
in severely cluttered scenes and occlusions. Drost et al pro-
posed the point pair feature (PPF) [28] algorithm. The tradi-
tional point descriptor-based method relies on local inform-
ation around a point; however, the PPF method uses point
pairs of features to create global descriptors and then uses a
speedy voting scheme for local matching of the model. Point
pair features contain information about the distance and nor-
mals of two arbitrary 3D points, making PPF a very effective
method for 6D pose estimation. Vidal et al proposed a flex-
ible approach that can handle textured and untextured objects,
which possesses a learnable intermediate structure that is able
to conduct dense 3D object coordinate label matching [29].
In 2019, Wang proposed the DenseFusion [16] neural net-
work. DenseFusion uses a heterogeneous network to process
the RGB images and point clouds separately to capture the
color features and point cloud features, then performs pixel-
level feature fusion. Each fused feature gives a prediction
and its confidence level; ultimately, the prediction with the
highest confidence level is selected as the pose estimation
output.

2.3. RGB-D-based methods

The classical pose estimation methods using RGB-D data as
input extract features by hand and then perform the associated
grouping and hypothesis validation [7, 30, 31]. Manual fea-
ture extraction cannot perform well under the circumstances
of severe occlusions, cluttered scenes, and environmental
changes, so models based on CNNs for direct object pose pre-
diction emerged [14, 19, 32-38]. They either estimated the
6D pose from the color data only or fused depth images as
an additional channel of color images [33] before making pre-
dictions, and subsequently applied the depth information in
the pose optimization stage. DenseFusion [16] processed color
and depth information using different networks, and then com-
bined the two at the pixel level to perform pixel-level pose
estimation, thus achieving the most advanced performance at
that time.

Inspired by DenseFusion, we estimated the 6D poses of
objects by fusing the color and depth information. The dif-
ference is that we extracted the color and depth informa-
tion with a CNN and PointNet, respectively. We then merged
the color features into the point cloud and used our pro-
posed region-level feature extraction network, the design of
which was based on PointNet++ [39] and DGCNN, for pro-
cessing the point cloud generated in the previous step to extract
more expressive region-level features. Next, we combined
these region-level features with the global features to perform
region-level pose estimation. We demonstrate that the novel
region-level feature fusion and extraction scheme proposed in
this study outperforms DenseFusion.

3. Proposed methods

In this study, we proposed a 6D pose estimation method. Given
an image, the task of 6D pose estimation is to estimate the
orientation and translation of the object in 3D space. The
specific output is represented by [R|f], where R denotes the
3D rotation and ¢ represents the 3D translation of the object
relative to the camera’s coordinate system. We assumed that
the problem of adverse conditions can be solved by fusing
the color and depth information of the image, followed by
region-level feature extraction. The key techniques are fus-
ing the features and extracting the region-level features prop-
erly and effectively. We combined the extracted color inform-
ation into the corresponding point clouds and then performed
region-level segmentation on the resulting point clouds, after
which we used the proposed region-level feature extraction
network for capturing the region-level features to implement
the key techniques. Our extracted region-level features con-
tained both color and geometric information. The region-level
information has a powerful capability for feature represent-
ation, which is conducive to solving the problem of estim-
ating an object’s pose in the case of textureless objects and
heavily cluttered scenes. After obtaining the estimation res-
ults with the highest confidence, we used a pose estima-
tion optimization module [16] to improve the accuracy of the
results.

3.1. Overview of the architecture

Figure 1 illustrates the overall architecture of the proposed
method. The architecture contains three main parts: the first
part was used to obtain the masked bounding boxes of each
known object category with a semantic segmentation network.
We then cropped the color image patch and the object point
cloud of each object according to the results of segmenta-
tion. In the second part, the color features were extracted from
the CNN and the geometric features from the PointNet net-
work. Afterwards, pixel-level feature fusion was executed. We
processed the fused point clouds with the network based on
PointNet++ and DGCNN to obtain multiple region-level fea-
tures and one global feature. After that, these region-level fea-
tures were combined with the global features separately. The
combined features were used for pose estimation, outputting
the most confident estimation result. Finally, we utilized a pose
refining module to optimize the result.

3.2. Semantic segmentation

In the first part of our method, we used a semantic segmenta-
tion network to detect the objects of interest in the image. The
output of this network can provide more information about the
target and can handle the occlusion problem effectively. Here,
we used the segmentation network in PoseCNN [14]. The seg-
mentation network has an encoder—decoder architecture that
takes an image as input and outputs a segmentation map of
N+ 1 channels. The first channel describes the background,
and the remaining N channels describe the N known classes of
objects.
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Figure 1. Overview of the proposed 6D pose estimation model.

3.3. Feature extraction and fusion
3.3.1. Region-level feature extraction

3.3.1.1. Color feature extraction.  Each channel is a binary
mask where active pixels depict objects of each of the N pos-
sible known classes. Based on the mask and the external rect-
angle which we calculated by the edges of the mask, the ori-
ginal image was cropped into an image patch with a size of
hxwx 3. An image patch only contained one object. The
RGB image contained more information than the depth map.
Due to the sparsity of point cloud, the point cloud processing
network was not effective enough in extracting the features.
The color map could not be fully utilized by directly mer-
ging the color map into the depth map and feeding it into the
point cloud processing network. Therefore, we designed an
encoder—decoder CNN for pre-feature extraction of the color
image patches. The network mainly consisted of ResNet18 and
pyramid scene parsing network (PSPNet). As we also fused the
color features into the point cloud, the size of the color feature
maps had to be the same as that of the original image patch.
Consequently, we used an upsampling module after PSPNet to
scale up the obtained feature maps, as shown in figure 2. The
cropped image block was fed into the color feature extraction
network, and then we obtained the feature maps with a size of
hxXwX Drgb'

3.3.12. Geometric feature extraction.  The depth image was
cropped on the basis of the mask obtained through semantic
segmentation, and then the cropped result was transformed
into a point cloud with a size of N x 3, where N represents
the number of points in the point cloud. To use the geometric

hXxwx3 hxXwXD,,
Color
1 Upsample
P RestNet18 PSPNet Module — F;;:;:e

Figure 2. Feature extraction network.

information in the depth map more thoroughly, we extracted
the geometric features of the point cloud using PointNet and
obtained feature maps with a size of N x Dp.. PointNet can be
used to process point clouds and thus to obtain dense point-by-
point features, which are conducive to the fusion of the pixel-
level color features and geometric features.

3.3.2. Pixel-level feature fusion.  After the above feature
extraction process, we obtained dense color features and the
point cloud’s geometric features. Because of occlusion of the
objects in cluttered scenes and semantic segmentation errors,
these dense features may contain the points of other objects
or backgrounds. Direct global fusion of the color features and
geometric features can degrade the performance of the estim-
ation. Therefore, we used pixel-level fusion, which can effect-
ively fuse dense color and geometric features, which is espe-
cially suitable for estimating an object’s pose in the case of
occlusions and classification errors. There were N points in
the point cloud. On the basis of the correspondence between
the color pixel points of the original color image and the point
cloud, we selected N pixel points from the color features and
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fused them with the point cloud for feature fusion. The pixel-
level fusion network outputted a point cloud with a size of
N % (Dpc + Drgp).

3.3.3. Region-level feature extraction. In cluttered scenes,
objects may be occluded; therefore, the ability to extract the
features of objects is easily affected, which leads to inaccurate
estimation of the object’s pose. In this case, we can use multi-
scale receptive fields to extract different region-level features.
The small-scale perceptual field can extract the region-level
features of the object, and the large-scale field can extract the
global features. The different region-level features obtained
are then combined with the global features and fed to the pos-
itional estimation network for positional estimation. In this
way, the network can estimate an object’s pose by extract-
ing the local features in a severely cluttered scene, which
can effectively solve the pose estimation problem in complex
environments. Therefore, designing an effective region-level
feature extraction network is of top priority.

To extract more effective region-level features, we pro-
posed a custom region-level feature extraction network based
on PointNet++ and DGCNN for processing point clouds with
a size of N x (Dpc —i—Drgb) generated after feature fusion. If
the dimension of the feature is too high, the network may
learn some meaningless messages. Then the performance of
the network will be weakened. Here we chose Dp. and Digp
as both 64. PointNet++ consists of several hierarchies [39],
each of which has three parts: the sampling layer (sampling),
the grouping layer (grouping), and the PointNet [17] layer.
The sampling and grouping layers are used for integrating
the local information, and PointNet is used as the feature
extractor to obtain features from the local area of the point
set. PointNet++4- divides the point set into overlapping local
regions to extract the region-level features. However, PointNet
uses pooling to extract global features and thus the represent-
ation of the output is not strong.

We introduced DGCNN to extract the features more effi-
ciently. DGCNN [40] is a network with an integrated convo-
lutional module (EdgeConv) as the core. It models the relation-
ship between points in the point cloud so that the network can
learn the local and global features while learning the informa-
tion about each point. EdgeConv first calculates the edge fea-
tures e;; based on the points X; and X; in the point cloud, and
then performs an aggregation operation on these edge features
to solve x/.

The edge features (e;;) are calculated as follows:

.F F F’
{hg.R xRF 5 R )

e;j = hy(Xi, X))

where hg is a nonlinear activation function composed of the
learnable parameters 6. In this study, we applied the following
expression of the function hy:

ho (X, X;) = o (Xi, X; — X;). )

(N:Dpc+Drgb) (N’,ng+Drgb) CN', K, Dpc+DTgb> (N,:Doutput)

o® K
eees® ceo®

Sampling

Grouping

Figure 3. Local feature extraction of the point cloud.

x! is obtained by adding a channel-level symmetric aggrega-
tion operation o.

x| = 0j,(1 jye=ho (Xi,X;). (€))

DGCNN [40] can dynamically update the graph structure
between the layers to better learn the semantic information
of the point set. The EdgeConv module is able to extract the
features of the local shape of the point cloud effectively and
maintain an invariant alignment. Therefore, we used the Edge-
Conv module in DGCNN instead of the PointNet structure in
PointNet++, as shown in figure 3.

Taking a point set of size N X (Dpc + Dygp) as input, the
sampling layer uses the farthest point sampling algorithm to
select N’ points from the input points. These N’ points are
the points furthest from each other (in the metric 3D distance
instead of (D + D,gp) — dimension distance) and they define
the center of the local regions. The grouping layer constructs
the local region sets by the ball query method, which finds all
the points within the radius of the query point (region center)
and selects the k nearest points from the query point to gener-
ate the local region’s point sets. If the number of points is less
than k, in-ball points are reused to supplement them. K-nearest
neighbors (KNN) is not used to find a fixed number of neigh-
boring points because the local neighborhood of the query
sphere ensures a fixed regional scale. The local area features
are more generalized and universal in space, which is signific-
ant for extracting the local area’s features. After grouping, we
can acquire a point set with a size of N’ X K X (Dpc + Digp ), as
shown in figure 3. The DGCNN layer can encode the N’ local
region point set as a feature vector with a size of N’ x Doutput-
Therefore, the size of the output datais N x D ouiput, While pre-
serving the 3D coordinates of the N’ center of mass. In our pro-
posed structure, the local regions that have been sampled and
grouped are divided again in the DGCNN layer to extract the
higher-level features. We use two abstraction levels to help us
extract various levels of region-level features, which facilitate
the successive aggregation of the local point cloud’s regions
into larger regions. The penultimate layer of this network out-
puts Npaeh local feature vectors with a size of Djocai, i.€. the ori-
ginal point cloud is partitioned into Npqch local regions, and the
last layer outputs global feature vectors with a size of Dgigpal-
The improved model has a stronger capability of extracting
region-level features than PointNet++.

We can then merge these Npach feature vectors with the
global feature vectors with a size of Dgjopar and finally obtain
Npach hybrid feature vectors with a size of Digcal + Dgiobal- The
final feature vector contains both the global and local features
and has excellent ability to represent the features.
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Figure 5. Optimization of pose estimation.

3.4. Pose estimation and refinement

After the feature fusion operation, we fed the obtained
features into the pose estimation network. As shown in
figure 4, the pose estimation network has three main branches,
namely predict rotation, translation, and confidence. We chose
the one with the highest confidence as the output of the
network [16].

After obtaining the pose estimation results, we proceeded to
optimization of the result. Since the traditional iterative closest
point (ICP) [41] algorithm cannot meet the requirements of
real-time application, here, we used a neural network-based
iterative optimization module that can optimize the pose estim-
ation results quickly and robustly. The goal of the network was
to iteratively reduce the error of the network’s pose estima-
tion and improve the prediction results of pose estimation, as
shown in figure 5. The original point cloud of the object was
transformed using the pose obtained from the backbone net-
work. The geometric features of the inverted point cloud were
extracted using PointNet and fused with the original color fea-
tures, and the fused features were used to estimate the residuals
of the poses. After k iterations, we merged the obtained pose
residuals with the initial positional prediction results to obtain
the final pose prediction results. The calculation formula is as
follows:

P = [Relti] - [Ri—1]ti—1] -~ [R, |t0] - )

3.5. Loss function

Having defined the overall network structure, we turned our
attention to the learning objectives of the network. We defined
the pose estimation loss as the distance between the sampled
points on the model of the object in the ground truth pose and
the corresponding points on the same model transformed by
the predicted poses. Specifically, an asymmetric object at this
distance is expressed by the following formula:

M
1 . N
LIPZM E H(Rx]'—l—t)—(R,‘x]‘—i-l,‘) ‘ (®)]
j=1
For symmetric objects, the formula is
LM
p_ - ; . _(Rox. 47

L=+ > OgglMH(Rx/ +1) — (Rixj +1;) \ ©)

where M denotes the number of sampling points; x; denotes
the j-th point of M; p = [R|t], where R and 7 represent the true
rotation and translation; and I%,- and 7; represent the rotation
and translation generated from the fused embedding of the i-
th dense pixel.

We wanted our network to learn to balance the confidence
among the predictions for the dense pixels. To that end, we
weighted the loss per dense pixel with the dense pixels’ con-
fidence, and added a second confidence regularization term.
The final loss function of this network is shown in the follow-
ing formula:

N
L= lZ(L‘i”c,- —wlog(ci)) @)

N 4
i=1

where N is the number of randomly sampled features of dense
pixels from the p elements of the segment, w is a balancing
hyperparameter, and ¢; is the confidence of each feature vector.
Intuitively, low confidence will result in low pose estimation
loss but would incur a high penalty from the second term, and
vice versa.

4. Experimental

In the experiments, we aimed to answer two questions.
(a) Does the proposed region-level feature network produce
good results when extracting features? (b) Can the designed
pose estimation network deal with the estimation problem in
severely cluttered scenes?

For the first question, the ModelNet [19], ShapeNet [20],
and S3DIS [21] data sets were applied in the tests, which cor-
respond to three scenarios of classification, part segmentation,
and scene segmentation, respectively. For the second question,
we tested our model on the LINEMOD [22] data set, which is
one of the most widely used data sets, and thus we could com-
pare our method with existing methods.
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4.1. Data sets

ModelNet data set: the data set is a 3D image classification
data set containing 40 classes of CAD models, including 9843
training data and 2468 test data.

ShapeNet data set: the data set is a part segmentation data
set containing 16 881 3D models in 16 categories, and most
object models are divided into two to five parts.

S3DIS data set: the data set is a scene segmentation data set
containing 3D scans of six regions containing 271 rooms. The
room types include conference rooms, photocopy rooms, foy-
ers, restaurants, and toilets. Each point in the room is marked
as one of the 13 object types (tables, chairs, flooring, walls,
etc).

LINEMOD data set: there are 13 objects that are texture-
less in this data set, and it contains most of the challenges
faced in 6D pose estimation, including textureless and severely
cluttered scenes.

4.2. Evaluation metrics

Regarding the classification test on the ModelNet data set, we
used the average accuracy (AA) and overall accuracy (OA) rate
for our evaluation. The calculation formulas are as follows:

SACP
PC

where SACP is the sum of the accuracy of each category of pre-
diction, QC stands for the quantity of categories, PC denotes
the predicted number of correct detection, and 7N is the total
number.

On the ShapeNet data sets, Mean Intersection over Union
(MIOU) was used to evaluate the effect of the local point fea-
ture extraction network on the part segmentation task. The
Intersection over Union (IOU) of the predicted part and the
true part of each object in a certain class was calculated first,
then the MIOU was obtained by averaging the /OU of each
class of objects. The formula for the MIOU is

*. ROILNROIG;

10
ROIpiUROIGi (10)

1
MIOU = +
k i=1

where ROI,,; represents the i-th predicted part of the element,
ROIg; denotes the i-th real (true) graphic, and k is the number
of object categories.

On the S3DIS data sets, MIOU was used to evaluate the res-
ults of the local point feature extraction network for the scene
segmentation task.

On the LINEMOD data set, we used the average distance
measurement ADD [42] and 2D reprojection [23] for the
measurement. ADD indicates the average distance between
the corresponding point in the 3D models of the real pose and
the estimated pose, namely

ADD:;%;H(R;CH)—(&H%)H (11

where M represents the collection of 3D model points, m is
the number of points in the collection, R denotes the 3D rota-
tion, ¢ represents the 3D translation of the object relative to
the camera’s coordinate system, and R and 7 are the estimated
rotation and transition. For symmetrical objects, when objects
are in different poses, they may appear the same in the image
when they are photographed from the same angle. In order to
solve this problem, we employed the distance of nearest point
to calculate the average distance [42]:

1 o
ADD—S = — ' HR N—(R IH
1

12)

If the average distance is less than the predefined threshold,
the estimated 6D pose is considered to be correct. In
general, the threshold is set to 10% of the 3D model’s
diameter.

The 2D reprojection measurement is calculated as

1 o
h2D = — HKR N —K(R zH
pro m%; (Rx+1) — K(Rx+1)

13)

where K is the camera’s intrinsic parameters. When the 2D
reprojection is used, the estimated pose is considered to be
correct if the average distance between the 2D projection of
the 3D model for the real pose and the estimated pose is less
than five pixels.

4.3. Implementation

Three experiments that verified the effect of regional features
extraction were conducted using an AMD Ryzen 74 800 H
with Radeon Graphics 2.90 GHz and a NVIDIA GeForce RTX
2060 GPU platform, and PyTorch was used as the deep learn-
ing framework. The following configuration was designated
for all three experiments: the number of epochs was set to 250,
the batch size was set to 32, and the learning rate was set to
0.001. Adam was selected as the optimizer of the algorithm.
The dynamic momentum was set to 0.9, and the learning decay
rate was 0.7. For the part segmentation test with ShapeNet, we
used the data set division method proposed by Chang et al [43].
For the scene segmentation test with S3DIS, the 3D scanning
results of the room were divided into blocks with an area of
1 m x 1 m, and the network was trained to predict the type of
each block. The number of dimensions for each input point
was set to 9, including the XYZ coordinates, the RGB color
features, and the normalized position. In total, 4096 block
inputs were selected randomly during the training process.
In the test, all blocks were trained and tested via the k-fold
strategy.

For the pose estimation test with the LINEMOD data set,
we trained the network on a computer with an Intel Core i7-
9700 K@3.60 GHz CPU and a single NVIDIA GeForce RTX
1080TT GPU. The following configuration was used for all
three experiments: the number of epochs was set to 500, the
batch size was set to 4, the learning rate was set to 0.0001,
the decay margin was set to 0.016, and the refining margin
was set to 0.013. Adam was selected as the optimizer of the
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Table 1. Comparison of the models’ classification performance
using the ModelNet data set.

Table 2. Comparison of the scene segmentation results using the
S3DIS data set.

Model Input Average accuracy (%) Overall accuracy (%)  Model Mean IOU (%) Overall accuracy (%)
PointNet Point 86.2 89.2 PointNet 20.1 53.2
PointNet++ Point 90.7 91.9 PointNet+-+ 47.6 78.5
DGCNN Point 90.2 92.9 DGCNN 56.1 84.1
Proposed Point 90.9 93.8

algorithm. The datas et was divided according to the settings in
[16], in which the ratio between the training and testing images
was 15:85. For the LINEMOD data set, 2373 and 13404
images were used for training and testing, respectively. We
first trained the semantic segmentation network using cross-
entropy loss function. Then, we optimized the rest of the main
network using the loss function described in equation (7). The
color feature extraction network output a 64-dimensional color
feature map, and the geometric feature extraction network
also output a 64-dimensional geometric feature map, which
means that each pixel was represented by a 64-dimensional
feature vector. We fused the two 64-dimensional vectors and
sent them to a region-level feature extraction network based
on PointNet-++ and DGCNN, which had three set abstrac-
tion levels and finally output eight region-level feature vectors
of dimension 1664, including 128-dimensional local region
features, 512-dimensional local region features, and 1024-
dimensional global features. After that, the pose estimation
output the pose estimation results and confidence of each fea-
ture vector. The pose optimization module was not trained
with the main network because of the problem of convergence.
Therefore, we had to train the main network until convergence
first, then set the main network as fixed and started training the
pose optimization module.

4.4. Classification experiment using the ModelNet data set

In table 1, the region-level feature extraction network pro-
posed in this study is compared with previous models. The
experiments were performed on the ModelNet data set. Point-
Net, PointNet++, DGCNN, and the proposed region-level
feature extraction network in this study all used point cloud
as input. Among these models, the AA and OA of the proposed
region-level feature extraction network achieved the best res-
ults. Compared with the PointNet model, the proposed model
was better by 4.9% in terms of the AA and 4.6% in terms of the
OA. With PointNet++- as the comparison network, the AA of
the proposed model was better by 2% and the OA increased by
1.9%. Compared with the DGCNN model, the proposed model
increased by 0.7% in terms of the AA, and the OA increased by
0.9%.

4.5. Part segmentation experiment using the ShapeNet data
set

In this experiment, the performances of the proposed
region-level feature extraction network and other models on

ShapeNet data set were compared, and the results are listed
in table 2. The MIOU of the proposed model was the highest.
Our method achieved an accuracy of 85.6%, outperforming
the other five methods, and even outperforming DGCNN and
PointNet++ by 0.4% and 0.5%, respectively.

4.6. Scene segmentation experiment using the S3DIS data
set

The scene segmentation tests were conducted on the S3DIS
data set, and the performance of the proposed region-level
feature extraction network was compared with that of other
models. The corresponding results are shown in table 3. OA of
the proposed approach reached up to 84.8%, which is 31.6%,
6.3%, and 0.7% higher than PointNet, PointNet 4+, and
DGCNN, respectively. Among these models, the MIOU of
the proposed region-level feature extraction network achieved
56.7%, which was similar to that of the other models. The
MIOU of the proposed model was 36.6%, 9.1%, and 0.6%
higher than that of PointNet, PointNet++, and DGCNN,
respectively.

4.7 Pose estimation experiment using the LINEMOD data set

In table 4, the ADD-S measurement results of the proposed
network and the other approaches on the LINEMOD data set
are compared. Two groups of tests were conducted based on
the input type, namely RGB and RGB-D images. On the RGB-
D data set, the method proposed in this article achieved an
accuracy of 96.5%, which is 7.9% higher than the result of
the PoseCNN model and 2.2% higher than that of the Dense-
Fusion model.

The results of the 2D projection measurement test of
the proposed pose estimation approach and other benchmark
methods on LINEMOD data set are listed in table 5.

As in the last experiment, we compared the performance of
the models based on the RGB and RGB-D images. With the
RGB-D image as the data source, the accuracy of the proposed
approach reached 97.82%, which is 4.22% higher than that of
DenseFusion.

It is worth noting that the proposed method performed bet-
ter than DenseFusion in both the ADD-S measurement tests
and 2D projection measurement tests. This verifies the effect-
iveness of the proposed model.

Images of the pose estimation results are shown in figure 6.
The green bounding box represents the ground truth pose, and
the blue bounding box shows the predicted pose.
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Table 3. Parts segmentation test using the ShapeNet data set.

Object category # Shapes PointNet (%) PointNet++ (%) Kd-Net (%) PCNN (%) DGCNN (%) Proposed (%)

Mean / 83.7 85.1 823 85.1 85.2 85.6
Aero 2690 83.4 82.4 80.1 82.4 84 84.1
Bag 76 78.7 79 74.6 80.1 83.4 86.3
Cap 55 82.5 87.7 74.3 85.5 86.7 86.6
Car 898 74.9 77.3 70.3 79.5 77.8 78.8
Chair 3758 89.6 90.8 88.6 90.8 90.6 90.6
Earphone 69 73 71.8 73.5 73.2 74.7 76.7
Guitar 787 91.5 91 90.2 91.3 91.2 92.1
Knife 392 85.9 85.9 87.2 86 87.5 87.4
Lamp 1547 80.8 83.7 81 85 82.8 85.3
Laptop 451 95.3 95.3 94.9 95.7 95.7 96.3
Motor 202 65.2 71.6 574 73.2 66.3 71.7
Mug 184 93 94.1 86.7 94.8 94.9 95.2
Pistol 283 81.2 81.3 78.1 833 81.1 82.4
Rocket 66 57.9 58.7 51.8 51 63.5 61.6
Skateboard 152 72.8 76.4 69.9 75 74.5 79.1
Table 5271 80.6 82.6 80.3 81.8 82.6 83.2

Note: PCNN: pulse coupled neural networks.

Table 4. Comparison of the pose estimation results using the LINEMOD data set.

RGB RGB-D
Object BBS8 [24] PVNet HybridPose PoseCNN AAE SSD-6D DenseFusion Proposed
category (%) [23] (%) [25] [14] (%) [44] (%) [20] (%) [16] (%) (%)
Ape 40.4 43.6 63.1 77 24.35 65 92.3 94.5
Bench vise 91.8 99.9 99.1 97.5 89.13 80 93.2 93.9
Cam 55.7 86.8 90.4 93.5 82.1 78 94.4 96.4
Can 64.1 954 98.5 96.5 70.82 86 93.1 96.5
Cat 62.6 79.3 89.4 82.1 72.18 70 96.5 98.3
Drill 74.4 96.4 98.5 95 44.87 73 87 94.8
Duck 443 52.5 65.0 71.7 54.63 66 92.3 96.6
Eggbox 57.8 99.1 100.0 97.1 96.62 100 99.8 99.7
Glue 41.2 95.6 98.8 99.4 94.18 100 100 98.5
Hole 67.2 81.9 89.7 52.8 51.25 49 92.1 96.0
punch
Iron 84.7 98.8 100.0 98.3 77.86 78 97 95.9
Lamp 76.5 99.3 99.5 97.5 86.31 73 95.3 96.5
Phone 54 92.4 94.9 87.7 86.24 79 92.8 96.9
Average 62.7 86.2 91.3 88.6 71.58 79 94.3 96.5

Note: BBS: 8 corners of the bounding box. AAE: Augmented Autoencoders. SSD: single-shot detection

Table 5. Comparison of the 2D projection measurement results using the LINEMOD data set.

RGB RGB-D

Object category Brachmann [45] (%) BB8 [24] (%) Tekin [22] (%) DenseFusion [16] (%) Proposed (%)
Ape 33.2 95.3 92.10 96.85 99.71
Bench vice 64.8 80 95.06 88.26 94.95
Cam 38.4 80.9 93.24 93.82 98.04
Can 62.9 84.1 97.44 96.06 97.74
Cat 42.7 97 97.41 96.11 99.3
Drill 61.9 74.1 79.41 84.84 95.54
Duck 30.2 81.2 94.65 98.5 98.97
Eggbox 49.9 87.9 90.33 99.34 100
Glue 31.2 89 96.53 95.46 100
Hole punch 52.8 90.5 92.86 87.91 94.96
Iron 80.0 78.9 82.94 93.97 96.93
Lamp 67.0 74.4 76.87 92.32 96.93
Phone 38.1 77.3 86.07 92.99 98.46

Average 50.2 83.9 90.37 93.6 97.82




Meas. Sci. Technol. 34 (2023) 075402

X Liu et al

Figure 6. Illustration of pose estimation results using the LINEMOD data set.

5. Conclusion

In this study, we proposed a new 6D pose estimation algorithm
which is based on RGB-D images. We used a CNN and a
PointNet network to extract the color information and depth
information of the object and fuse them at the pixel level.
Then the region-level feature extraction network was pro-
posed based on PointNet +4 and DGCNN to process the
fused point clouds. After that, we obtained the global features
and several partial features. Through integration of the global
and local features, multiple fused features were obtained,
which were used for estimating the object’s pose. The res-
ult with the highest confidence was chosen and iteratively
optimized to acquire the final result of pose estimation for
the object. By means of the fusion approach we proposed,
the network can fully utilize color, depth, and local and
global information. Experiments using three data sets veri-
fied the effectiveness of the proposed model, and we also
achieved better results than the state-of-the-art algorithms on
benchmark data sets. The experimental results also showed
that this method can effectively cope with the pose estima-
tion problems in complex backgrounds and severely cluttered
scenes. The fusion of color and depth information and the
combination of local and global information has injected
new vitality into the problem of pose estimation. In the
future, we will further update our model to improve its
accuracy and real-time performance for the task of pose
estimation.
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