Environmental Research 251 (2024) 118725

o %

ELSEVIER

journal homepage: www.elsevier.com/locate/envres

Contents lists available at ScienceDirect

Environmental Research

A novel microbial community restructuring strategy for enhanced hydrogen

t.)

Check for
updates
L |

production using multiple pretreatments and CSTR operation

Jishan Jiang “, Tielan Guo b Jingyuan Wang ", Ao Sun ", Xingping Chen ", Xiaoxiao Xu",

Shaojun Dai ", Zhi Qin ™"

@ School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
b Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China

ARTICLE INFO

Handling Editor: Dr Aijie Wang

Keywords:

Multiple pretreatments
Microbial community
Activated sludge
Hydrogen production
CSTR

Anaerobic fermentation

ABSTRACT

To achieve rapid enrichment of the targeted hydrogen-producing bacterial population and reconstruction of the
microbial community in the biological hydrogen-producing reactor, the activated sludge underwent multiple
pretreatments using micro-aeration, alkaline treatment, and heat treatment. The activated sludge obtained from
the multiple pretreatments was inoculated into the continuous stirred tank reactor (CSTR) for continuous op-
erations. The community structure alteration and hydrogen-producing capability of the activated sludge were
analyzed throughout the operation of the reactor. We found that the primary phyla in the activated sludge
population shifted to Proteobacteria, Firmicutes, and Bacteroidetes, which collectively accounted for 96.69%
after undergoing several pretreatments. This suggests that the multiple pretreatments facilitated in achieving the
selective enrichment of the fermentation hydrogen-producing microorganisms in the activated sludge. The CSTR
start-up and continuous operation of the biological hydrogen production reactor resulted in the reactor entering
a highly efficient hydrogen production stage at influent COD concentrations of 4000 mg/L and 5000 mg/L, with
the highest hydrogen production rate reaching 8.19 L/d and 9.33 L/d, respectively. The main genus present
during the efficient hydrogen production stage in the reactor was Ethanoligenens, accounting for up to 33% of the
total population. Ethanoligenens exhibited autoaggregation capabilities and a superior capacity for hydrogen
production, leading to its prevalence in the reactor and contribution to efficient hydrogen production. During
high-efficiency hydrogen production, flora associated with hydrogen production exhibited up to 46.95% total
relative abundance. In addition, redundancy analysis (RDA) indicated that effluent pH and COD influenced the
distribution of the primary hydrogen-producing bacteria, including Ethanoligenens, Raoultella, and Pectinatus, as
well as other low abundant hydrogen-producing bacteria in the activated sludge. The data indicates that the
multiple pretreatments and reactor’s operation has successfully enriched the hydrogen-producing genera and
changed the community structure of microbial hydrogen production.

1. Introduction

Hydrogen energy has the advantages of high energy density, clean-

microorganisms in the hydrogen production reactor enables the
continuous production of clean energy source hydrogen (Ren et al.,
2011; Li et al., 2021).

liness and non-pollution, and therefore has received extensive attention
in the development of new renewable energy sources (Matamba et al.,
2023). In recent years, anaerobic fermentation for hydrogen production
using high concentration organic wastewater as a substrate has been
favored due to its dual role of wastewater treatment and clean energy
production. Anaerobic fermentation hydrogen production technology
utilizing organic wastewater employs a continuous flow method to
provide organic substrates. The fermentation of mixed anaerobic
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Pretreatment of reactor-inoculated activated sludge at the beginning
of the start-up operation of a biological hydrogen-producing reactor has
become an important means of increasing the percentage of the target
hydrogen-producing bacteria in the mixed sludge flora (Fu et al., 2021;
Zhou et al., 2020). The researches on pretreatment of the activated
sludge primarily focuses on heat treatment, acid and alkali treatment,
and micro-aeration pretreatment (Alexandropoulou et al., 2023). The
pretreatment method of heat treatment is currently more widely used.
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For example, the 100 °C pretreatment of activated sludge from soybean
treatment plant and sewage treatment plant can significantly improve
the hydrogen production capacity, the maximum was 1.9 mol Hp/mol
glucose (Rossi et al., 2011; Han et al., 2015). Hydrogen production ca-
pacity from activated sludge was also significantly increased when alkali
treatment and micro-aeration were used to pretreat activated sludge
(Wang and Yin, 2017; Fu et al., 2020). Micro-aeration pretreatment
contributed to the enrichment of hydrolytic and fermentative bacteria in
activated sludge (Ruan et al., 2019) and was also beneficial for
increasing the enzyme activity of hydrolytic bacteria and substrate
efficient hydrolysis (Zhou et al., 2021).

In recent years, researchers have increasingly investigated the use of
synergistic combinations of two or more pretreatment methods for
activated sludge pretreatment, in addition to single pretreatment
methods (Hassan et al., 2020; Hu et al., 2023). Pretreatment of waste-
water activated sludge (WAS) with a combination of free nitrite and
calcium hypochlorite showed that the combined pretreatment signifi-
cantly increased the hydrogen production capacity of the activated
sludge compared to pretreatment with either method alone, with the
maximum hydrogen production rate increased by 76.2% compared to
pretreatment with either method alone (Ye et al., 2023). A study of WAS
pretreatment using a low temperature combined calcium hypochlorite
(CH) method (-5 °C, 0.12 g/g VSS CH, CH 65% purity) found that the
highest hydrogen production yield was up to 18.18 + 0.43 mL/g VSS
(Hu et al., 2023). Although research on combined pretreatment has been
conducted, it has mainly focused on the combined pretreatment of
anaerobic digested sludge, and the pretreatment of a small number of
hydrogen-producing activated sludges is also based on batch fermenta-
tion experiments and lacks long-term monitoring (Hassan et al., 2020;
Hu et al, 2021). Combined multiple pretreatments of anaerobic
hydrogen-producing activated sludge and inoculation of the pretreated
sludge into a continuous stirred tank reactor (CSTR) for long-term
continuous cultivation, and long-term and systematic comprehensive
tracking of the activated sludge flora during operation have rarely been
reported.

In this study, three pretreatment methods, namely micro-aeration,
alkaline treatment, and high-temperature heat treatment, were com-
bined to reduce the number and activity of methanogenic bacteria and
other hydrogen-consuming bacteria in activated sludge, and to effec-
tively enrich the hydrogen-producing flora in the activated sludge. This
process also improved the hydrogen-producing flora of activated sludge,
ultimately resulting in a mixed bacterial flora of activated sludge with
higher hydrogen-producing capacity and stability. The constructed
high-efficiency hydrogen-producing flora were inoculated into the CSTR
for continuous operation. A multi-stage approach was adopted to sys-
tematically track the change rule of microbial community in the reactor
during the critical period of reactor operation. This laid an important
research foundation for the realization of high-efficiency hydrogen
production and stable operation of the biohydrogen production reactor.
It also provides critical information for further optimizing the bacterial
community structure and improving the hydrogen production capacity
of the reactor.

2. Materials and methods
2.1. The pretreatment of seed sludge

The raw sludge, detoxified in the secondary sedimentation tank of
the chemical pollutant treatment plant, is used as the activated sludge
inoculant in the CSTR for hydrogen production. This original activated
sludge is black and granular with a positive settling performance. The
sludge settling velocity (SV30) is approximately 15%. After three stages
of pretreatment, the activated sludge was inoculated as seeding sludge
into the CSTR to start a continuous biological hydrogen production re-
action. In the pretreatment stage I (Pre-I), the seeding sludge was diluted
from 5 L to 20 L and then micro-aerated at 1 L/h aeration rate for 7 days

Environmental Research 251 (2024) 118725

(Nguyen and Khanal, 2018). In the pretreatment stage II (Pre-II), the
sludge was treated with alkali (10% w/v NaOH, pH 10) for 24 h (Cai
et al., 2004; Dessi et al., 2018; Kim et al., 2013; Zhou et al., 2020). And
then the sludge was subjected to a heat treatment (115 °C) for 15 min
(Wang and Yin, 2017). Which was the pretreatment stage III (Pre-III).

2.2. Experimental equipment

The reactor is designed as an integrated structure of the reaction area
and the settlement area (Fig. 1). The reactor is equipped with an electric
stirring device for complete mixing of organic waste water and activated
sludge. The reactor also has a solid-liquid-gas three-phase separation
device inside. the inlet water flow rate was automatically controlled by a
metering pump, and the temperature was controlled at 35 + 1 °C by a
temperature probe installed in the inner cylinder of the reactor. The
effective volume of the reaction area of the reactor is 6 L.

2.3. Acclimation of anaerobic activated sludge and reactor operation
control

The substrate for the biohydrogen production reactor was sugarcane
molasses. To keep the ratio of m(COD):m(N):m(P) at 1000:5:1, the
NH4CI and K3;HPO4 were added in sugarcane molasses.

The activated sludge was inoculated into the CSTR after micro-
aeration, alkali treatment, and heat pretreatment, and then operated
continuously for 170 d. The hydraulic retention time (HRT) was
controlled to be about 8 h. In the initial stage of the reactor start-up
operation, the influent COD concentration of molasses was set at
3000 mg/L, which corresponds to an organic loading rate (OLR) of 9 kg/
m°>-d (Stage I). The OLR of the reactor was subsequently controlled by
adjusting the influent COD concentration of the reactor after the initial
acclimation of the activated sludge. The influent COD concentration in
the reactor was gradually increased to 4000 mg/L (Stage II), 5000 mg/L
(Stage III), and 6000 mg/L (Stage IV). As a result, the OLR of the reactor
also gradually increased to 12 kg/m3.d, 15 kg/m®.d, and 18 kg/m3.d,
respectively.

2.4. High-throughput sequencing

A total of 15 samples from the activated sludge in various periods of
the seeding sludge (Origin), the pretreatment stages (Pre-I, Pre-II, and
Pre-III), and the start-up and continuous operation stages (Stage-I,
Stage-II, Stage-III, and Stage-IV; two sampling time points in Stage-I and
three in Stage II, III, and IV, respectively) were used for the analysis of
the microbial community structure (Supplemental table S1).

DNA extraction of 15 samples was carried out using a soil DNA kit.
PCR amplification of the extracted DNA was performed using the uni-
versal primer 341F/805R for the conserved region V3-V4 of the sam-
ples. High-throughput sequencing was performed on the Illumina
Miseq™/HiSeq™ platform (Zhang et al., 2014). Sequences are clustered
into Operational Taxonomic Units (OTUs) as proxies for species (Edgar,
2018). Samples were analyzed and visualized for microbial community
structure based on the R and RStudio platforms (R Core Team, 2023).
Various indices such as the Abundance-based Coverage (ACE), the
Chaol estimator, the Good’s coverage (Coverage), the Shannon index,
the Simpson index, and the Pielous’ evenness index (Pielou) were used
to measure the microbial diversity of the activated sludge (Dou et al.,
2023; Ren et al., 2022; Zhang et al., 2012). Redundancy analysis (RDA)
was performed to identify the environmental variables that affect the
microbial community at the genus level (Dou et al., 2023). These ana-
lyses were performed using the “Vegan” package (vegan 2.6-4) in the R
environment (version 4.3.1) (Sun et al., 2024). The phyla with relative
abundance greater than 1% in all samples were taken as the dominant
flora (Shi et al., 2023).
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Fig. 1. Schematic of the CSTR. 1. Inflow pump. 2. Stirring paddle and speed control motor. 3. Heating rod thermostat. 4. Thermometer. 5. Gas meter. 6. Inlet port; 7.

Outlet port. 8. Biological sampling port. 9. Drain port.

2.5. Analytical methods

The COD concentration was determined by potassium dichromate
method (Walter, 1961). The pH was monitored by PHS-3C acidimeter (Li
et al., 2004). The cumulative gas production was measured by wet gas
flow meter (Yin et al., 2023). The hydrogen content was detected by
GC1120 gas chromatograph with thermal conductivity cell detector
(Simon and Arndt, 2002). Liquid-phase fermentation product composi-
tions were analyzed using a 7890B-5977A GC-MS gas chromatograph
and a Waters SQ Detector 2 liquid-liquid-mass spectrometer with a
four-stage rod (Chen et al., 2014; Cordell et al., 2013).

3. Results and discussion

3.1. Changes in microbial community structure during the pretreatment
stage

The microbial community structure and diversity were altered dur-
ing the multiple pretreatment process (Table 1 and Fig. 2). The coverage
of the samples in the Origin and three pretreatment stages is above 99%,
indicating that the sequencing results can represent the real situation of
the samples (Table 1). According to Shannon and Simpson’s diversity
index analysis, the microbial diversity was increased and reached the
maximum value in stage Pre-I, which indicates that micro-aeration
pretreatment is beneficial to the microbial diversity of activated
sludge (Table 1). The microbial diversity showed a decrease during al-
kali treatment and heat treatment in stages Pre-II and Pre-III, with a
significant decrease in Stage Pre-III (Table 1). The OTU index also re-
flected a significant decrease in stage Pre-IIl (Table 1). This indicates
that heat treatment at stage Pre-III has a more significant effect on both
the diversity of the microbial community and the number of

microorganisms.

A total of 26 phyla were identified at the phylum level (Fig. 2a and
b). The stages Origin and Pre-I shared the similar dominant phyla
(relative abundance >1%) (Fig. 2a). Some of the dominant phyla
exhibited significantly high abundance in stage Pre-I than that in stage
Origin, such as Proteobacteria, Planctomycetes, Bacteroidetes, Acid-
obacteria, Actinobacteria, and Firmicutes (Fig. 2b). Micro-aeration
pretreatment has been utilized to enhance the facultative hydrolytic
and acid-producing bacteria in anaerobic digestion (Huilinir et al., 2023;
Zhang et al., 2021). Nevertheless, micro-aeration has not been employed
as a pretreatment technique in anaerobic fermentation for hydrogen
production. The current study reports the dominance of Proteobacteria,
Bacteroidetes, Actinobacteria, and Firmicutes, which are important
phyla in the anaerobic degradation of complex substrates, hydrolysis,
and acidification (Ruan et al., 2019). Interestingly, these phyla have also
been reported in the anaerobic digestion system (Huilinir et al., 2023).
This suggests that these phyla were critical for the two-phase anaerobic
fermentation. In stage Pre-I, the relative abundances of 22 phyla were
increased when compared with the stage Origin (Fig. 2b). This indicates
that micro-aeration in pretreatment stage favors the growth of aerobic
bacteria and also indirectly favors the growth of facultative anaerobe
and strict anaerobe bacteria in the activated sludge. The optimized
community structure after micro-aeration contributed to further
screening of hydrogen-producing bacteria.

To reduce the methanogenic activity of the seed sludge, alkaline
pretreatments were used. The community composition and abundance
of microorganisms were altered obviously after the treatments of alkali
and thermal in stage Pre-II and Pre-III (Fig. 2). Significantly, the Fir-
micutes (59.58%) and Bacteroidetes (33.27%) were the most dominant
phyla in stage Pre-II, which was quite different with other three stages
(Fig. 2a). This indicates that the alkali treatment at stage Pre-II removed

Table 1

Sequence information and diversity analysis of samples in the multiple pretreatment stages.
Sample Reader” Coverage” OTUs" Chao1? ACE® Shannon' Simpson® Pielou”
Origin 26200 0.9957 736 838.0645 806.4766 5.1106 0.0171 0.7742
Pre-1 47774 0.9991 681 701.0233 700.2984 5.2000 0.0138 0.7971
Pre-1I 52051 0.9977 769 838.3204 874.0187 5.0867 0.0190 0.7655
Pre-III 38670 0.9965 696 777.4865 801.6525 3.5077 0.1170 0.5359

# Reader is the sum of observed Operational Taxonomic Units (OTUs).
Y Good’s coverage (Coverage) refers to the coverage of the detection and sequencing of the species.
¢ The OTUs is the number of observed OTUs for an OTU definition.
4 The Chaol estimator and.
¢ the Abundance-based Coverage (ACE) estimator are indexes to measure the species richness of the community.
f the Shannon index and & the Simpson index are indexes to measure the diversity of the community.
h the Pielous’ evenness index (Pielou) is index to measure species evenness for each community.
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Fig. 2. Activated sludge microorganisms in the multiple pretreatment stages at
the phylum classification level. (a) community structure analysis; (b) microbial
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blue represent the increase and decrease of the phylum abundances, respec-
tively. Gray represents phyla not identified.

most other bacteria in reactor. A recent study reported that the alkali-
zation treatment was applied to the in-situ waste sludge in anaerobic
bioreactors (ABRs). After 7 days of treatment and agitation at 400 rpm,
the dominant phyla were enriched in the sludge such as Firmicutes,
Bacteroidetes, and Proteobacteria under the optimized alkalinities of pH
9 and 10 (Zhou et al., 2020). The abundance of Proteobacteria showed a
significant decrease from 36% in the stage Pre-I to 1.56% in the stage
Pre-II, suggesting greater alkaline sensitivity of Proteobacteria in com-
parison to Bacteroidetes.

Following the alkali treatment, the heat treatment further contrib-
uted to the enrichment of hydrogen production bacteria and reduced the
methanogenic activity (Wang and Yin, 2017). In the stage Pre-III, Pro-
teobacteria (67.15%), Firmicutes (18.59%) and Bacteroidetes (10.95%)
were selected as the dominant phyla (Fig. 2a). The Proteobacteria in
stage Pre-IIl was increased 31.98 times when compared with that in

Environmental Research 251 (2024) 118725

stage Pre-II (Fig. 2a). These phyla have also been identified in the acti-
vated sludge from the batch reactor after the combined alkali and
thermal pretreatment for anaerobic fermentation of hydrogen produc-
tion (Kang et al., 2012). The Proteobacteria, Bacteroidetes, and Firmi-
cutes are common fermentative acid-producing bacteria in mesophilic
anaerobic reactors (Kang et al., 2012; Xin et al., 2021). They are mi-
croorganisms that have genes encoding hydrogenases (Ma et al., 2021).
[FeFe]-hydrogenase homologs are mainly present in the Firmicutes,
whereas [NiFe]-hydrogenase homologs are primarily found in the Pro-
teobacteria (Peters et al., 2015). The significant enrichment of these
flora in stage Pre-III implied that the combined pretreatments of alkali
and heat facilitated the screening of hydrogen-producing bacteria in
activated sludge.

The pretreatments have been reported to optimize the microbial
community structure of activated sludge (Fu et al., 2023; Mohammadi
et al., 2012; Rafieenia et al., 2018). The multiple pretreatments of
micro-aeration, heat, and alkaline conditions was utilized in this study.
Our findings indicate an increase in the abundance of anaerobic
fermentation hydrogen-producing bacteria in the activated sludge,
promoting hydrogen production in the reactor.

3.2. CSTR start-up and continuous operation

After multiple pretreatments, the activated sludge was inoculated
into the biological hydrogen production reactor, and the reactor was
then started up and operated. To complete the start-up of the reactor and
the acclimation of the activated sludge, the influent COD concentration
was gradually increased (Fig. 3a). In the initial two stages, the influent
COD was regulated at 3000 mg/L and 4000 mg/L, respectively. The
gradual increase of the influent COD substantially increased the COD
removal efficiency under these circumstances (Fig. 3a). The average
COD removal efficiencies at the two stages were 14.59% and 29.43%,
respectively. This suggests that the activated sludge can be acclimated to
attain a satisfactory COD removal efficacy when the influent COD con-
centration is at 4000 mg/L (Fig. 3a). In Stage-III, the reactor demon-
strated the capacity to sustain proficient COD removal efficacy (30%)
when handling an influent COD concentration of 5000 mg/L, the
optimal operational condition for the reactor (Fig. 3a). Under the con-
dition of the influent COD of 6000 mg/L in Stage-IV, the COD removal
efficiency of the reactor was gradually decreased and the average COD
removal efficiency was 26.99% (Fig. 3a). This indicates that the removal
of organic material in the reactor is being hindered by an excessive
substrate concentration. Therefore, in the stable operation stage (Stage
III) of the biological hydrogen production reactor, the appropriate
influent COD should be controlled at approximately 5000 mg/L to
ensure higher COD removal efficiency.

The influent and effluent pHs changed during the start-up and
operation of the CSTR (Fig. 3b). At the very beginning of Stage-I, the
CSTR shifted from an aerobic to an anaerobic environment, and the
effluent pH was decreased rapidly from 8.00 on day 1-5.49 on day 5.
From Stage-I to Stage-IV, the anaerobic fermentation of the activated
sludge produced organic acids, resulting in a gradual decrease of the pH
value in the reactor. The average values of effluent pH in four stages
were 5.17, 4.86, 4.61, and 4.38, respectively (Fig. 3b).

During the CSTR start-up and operation stages, the hydrogen pro-
duction capacity is mediated by COD concentration and pH changes in
various stages of the reactor (Fig. 3c). At the very beginning of Stage-I,
the reactor had a low average hydrogen production rate and hydrogen
production yield of 0.22 L/d and 0.07 mol Hy/mol glucose, respectively
(Fig. 3c). The gas and hydrogen productions were gradually increased
after the activated sludge entered the Stage-II. The hydrogen production
rate was stabilized at 85 d-108 d, and the average gas and hydrogen
production rate were 46.68 L/d and 6.58 L/d, respectively. During this
period, the highest hydrogen production rate of 8.19 L/d was achieved
at 91 d, along with the highest hydrogen production yield of 1.83 mol
Hy/mol glucose (Fig. 3c). In Stage-III, the maximum hydrogen
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Table 2
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production rate and hydrogen production yield were 9.33 L/d and 1.67
mol Hy/mol glucose, respectively. At the beginning of Stage-IV, the
hydrogen production rate and hydrogen production yield were 9.44 L/
d and 1.40 mol Hy/mol glucose, respectively. However, at the end of
Stage-IV (after 160 d), the production of gas and hydrogen was signifi-
cantly reduced. This suggests that the excessive concentration of sub-
strate is detrimental to the hydrogen production process in the reactor.

Various anaerobic fermentation products from activated sludge at
different stages of CSTR operation were detected using LC-MS method
(Table 2). At the outset of Stage-I, acetic acid and butyric acid were the
predominant fermentation metabolites of the activated sludge. This in-
dicates that the CSTR fermentation type at this stage was butyric acid-
type (Table 2). By the end of Stage-I (Stage-I-2), the concentration of
butyric acid was comparatively lower, whereas the yields of valeric and
propionic acids were higher than those from Stage-I-1. This suggests that
the butyric acid-type fermentation began to decline. (Table 2).
Furthermore, it is noteworthy that the middle of Stage-II-2 indicated a
significantly higher concentration of ethanol. This observation implies
that the reactor had successfully transitioned from butyric acid-type
fermentation to ethanol-type fermentation during Stage-II. (Table 2).
Additionally, there was an increase in the total amount of fermentation
products during Stage-II and Stage-III, primarily attributed to the rise in
influent COD concentration in the reactor. Conversely, a decrease in the
total amount of fermentation products occurred during Stage-IV, indi-
cating that the activated sludge curbed the degradation of organic
substrate to generate organic acids under extreme COD conditions
(Table 2).

In summary, during reactor operation, the collected data indicates
that at the beginning of the CSTR start-up stage, there was a predomi-
nant fermentation of the butyric acid type under conditions of 3000 mg/
L influent COD and an average effluent pH value of 5.17. In Stage-II, as
the influent COD was kept under control at 4000 mg/L and pH at 4.86,
the fermentation transitioned into the ethanol type. Higher pH envi-
ronments benefit the achievement of butyric acid type fermentation,
whereas lower pH environments promote the conversion of ethanol type
fermentation (Li et al., 2007). For instance, in the study of anaerobic
fermentation for hydrogen production in the CSTR, butyric acid
fermentation was observed at pH levels 5.0, 5.5, and 6.0, while ethanol
fermentation was observed at pH 4.0 (Wu et al., 2017). The pH range of
the effluent between 4.35 and 4.92 is optimal for improving hydrogen
production in the reactor. The maximum hydrogen production rate and
hydrogen production yield recorded were 8.13 L/d and 1.83 mol Hy/mol
glucose in Stage-II. Stage III was marked by high-efficiency hydrogen
production, yielding a maximum of 9.33 L/d and 1.67 mol Hy/mol
glucose with a 5000 mg COD/L and an effluent pH value of 4.61.

Compared to activated sludge with micro-aeration pretreatment, the
efficiencies of hydrogen production and COD removal were significantly
improved (Table 3). The average hydrogen production of activated
sludge with micro-aeration pretreatment after acclimation of different
substrate concentrations was highest at 5000 mg COD/L, 189.45 mL/d.
At 3000 mg COD/L, the dominant bacteria were Spartobacteria

Changes in fermentation production mass concentration during CSTR start-up operation.

Sample Ethanol (mg-kg™") Butanol (mg-kg™!) Valerate (mg-kg ') Lactate (mg-kg™!) Propionate (mg-kg ') Butyrate (mg-kg ') Acetate (mg-kg™!)
Stage-1-1 (<10) (<5) 220 (<20) 620 4230 6500
Stage-1-2 (<10) (<5) 350 (<20) 900 2580 4890
Stage-II-1 (<10) (<5) 480 (<20) 1290 2060 5230
Stage-I1-2 5200 (<20) 1000 (<5) 1000 2000 5000
Stage-I1-3 (<20) (<20) 1000 (<5) 1000 2000 7000
Stgae-III-1 (<20) (<20) 1000 (<5) 1000 3000 8000
Stgae-III-2 (<20) (<20) 1000 (<5) 1000 2000 1000
Stage-III-3 (<20) (<20) 1000 (<5) 2000 2000 8000
Stage-IV-1 (<10) (<5) 130 (<2.5) 570 240 1400
Stage-1V-2 (<10) (<5) 97 (<2.5) 600 170 1600
Stage-1V-3 (<10) (<5) 89 (<2.5) 510 170 1700
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Parameters of activated sludge after micro-aeration pretreatment inoculated into a CSTR reactor.

Parameters 3000 mg/L COD 4000 mg/L COD 5000 mg/L COD

pH From 4.7 to 4.9

Average COD removal 10.62% 20.3% 22.4%
efficiencies

Gas production rate 1216 mL/d 1488 mL/d 1506 mL/d

Hydrogen production 84 mL/d 159 mL/d 189.45 mL/d

rate
Main metabolites
Dominant genera
(relative abundance)

Acetate, butyrate, and valerate -
Spartobacteria (26.10%), Megasphaera
(13.69%), and Clostridium IV (4.69%)

Novosphingobium (55.95%), Ethanoligenens (3.45%),
and Clostridium sensu stricto (2.13%)

Acetate, butyrate, and propionate
Ethanoligenens (24.16%), Megasphaera
(21.44%), and Clostridium 1V (15.52%)

(26.10%), Megasphaera (13.69%), Clostridium IV (4.69%). At 4000 mg
COD/L, the dominant organisms were Novosphingobium (55.95%),
Ethanoligenens (3.45%), and Clostridium sensu stricto (2.13%). At 5000
mg COD/L, the dominant species were Ethanoligenens (21.16%), Mega-
sphaera (21.44%), and Clostridium IV (15.52%). Under the micro-
aeration pretreatment condition, the activated sludge microbial com-
munity was poorly stable, which could have resulted in the low
hydrogen production during this CSTR operation (Wang et al., 2018).

Compared to other studies, our multiple pretreatment strategy for
activated sludge can achieve a higher hydrogen production rate or
hydrogen production yield. For instance, the activated sludges accli-
mated in the CSTR resulted in the maximum hydrogen production yield
of 1.40 mol Hy/mol glucose at a condition of volumetric loading rate of
4400 mg COD/L (Chang et al., 2011) and a maximum hydrogen pro-
duction rate of 6.6 L Hy/d under the condition of 8000 mg COD/L (Wang
et al., 2013). Additionally, in the expanded granular sludge bed (EGSB)
reactor, the granular sludge after mild pretreatment at 60 °C for 15 days
resulted in the maximum hydrogen.

production yield of 1.64 mol Hy/mol glucose (Yin et al., 2023). Their
maximum hydrogen production rate or hydrogen production yield were
all lower than our values of 9.33 L/d or 1.83 mol Hy/mol glucose,
respectively (Fig. 3c). Although the specific parameters of the reactors
are different in these studies, we can still speculate that employing a
multiple pretreatment strategy for activated sludge could improve the
capacity for hydrogen production.

3.3. Microbial community structure during the CSTR start-up and
continuous operation stages

Microbial community structure of the activated sludge during the
start-up operation of the CSTR hydrogen-producing reactor was
analyzed using high-throughput sequencing method (Table 4). The

analysis of Shannon’s and Simpson’s index showed that the diversity of
the microflora did not change significantly from Stage-I to Stage-III
when compared to those at the end of the multiple pretreatments
(Table 4). In the Stage-IV, the microbial diversity and evenness were
significantly reduced, which could be the main reason for the decrease in
COD removal efficiency and gas production (Table 4).

The high-throughput sequencing analysis showed that the relative
abundance patterns of microorganisms in the activated sludge changed
during the different stages of reactor operation (Fig. 4). Among the 27
phyla detected in the activated sludge, Firmicutes (49.00% ~ 79.20%),
Bacteroidetes (8.45-34.72%), and Proteobacteria (4.10% ~ 25.68%)
were taken as the stable core anaerobic fermentation flora at different
stages of reactor operation (Fig. 4a).

Species annotation revealed that 352 bacterial genera were identi-
fied in the activated sludge, with significant changes observed during
reactor operation, leading to a clear stage specificity of the microbial
community structure (Fig. 4b). In Stage I, the predominant genera were
f Ruminococcaceae (15.37%), Ethanoligenens (12.99%), and o_Bacter-
oidales (12.79%). Throughout Stage II, there was a shift in the dominant
community of microorganisms, with Ethanoligenens (21.84%), f Rumi-
nococcaceae (16.73%), and Prevotella (9.28%) becoming the most prev-
alent. In Stage III, the primary types of microbial genera were
Ethanoligenens (18.71%), Propionispira (14.36%), and Enterobacter
(11.68%). During Stage IV, the reactor was dominated by a microbial
community consisting of Ethanoligenens (30.38%), Prevotella (25.51%),
and f Ruminococcaceae (12.05%) (Fig. 4b). Importantly, the hydrogen-
producing Ethanoligenens was the stable dominant genus in all these
stages. The relative abundance of Ethanoligenens were increased signif-
icantly to 33% in stage-II, and remained at a high level (~22%) in stage-
III (Fig. 5b). This indicates that Ethanoligenens is the main hydrogen-
producing genus in the efficient hydrogen production stage in current
study (Castro et al., 2013; Li et al., 2019). It has been reported that

Table 4

Sequence information and diversity analysis of samples during CSTR start-up and continuous operation.
Sample Reader” Coverage” OTUs" Chao1! ACE® Shannon' Simpson® Pielou"
Stage-I-1 41171 0.9978 379 470.0000 467.9091 3.8156 0.0460 0.6426
Stage-1-2 54231 0.9982 390 479.3000 485.4139 3.2760 0.0820 0.5491
Stage-II-1 51838 0.9981 375 485.2500 475.6629 2.8289 0.1746 0.4773
Stage-I1-2 21519 0.9958 360 462.3750 448.8079 3.8020 0.0523 0.6459
Stage-I1-3 28660 0.9967 369 489.0000 462.8075 3.4248 0.0953 0.5794
Stage-III-1 25697 0.9972 349 414.7000 404.8980 3.7044 0.0528 0.6327
Stage-III-2 29821 0.9970 373 479.3333 449.8733 3.5869 0.0731 0.6057
Stage-III-3 34986 0.9972 391 513.5263 480.7764 3.7041 0.0613 0.6206
Stage-IV-1 86784 0.9984 550 644.4660 677.8373 2.8374 0.1141 0.4497
Stage-1V-2 91029 0.9982 567 726.0000 723.6618 2.5695 0.1621 0.4053
Stage-1V-3 77298 0.9984 508 591.8022 612.1239 2.5961 0.2010 0.4167

# Reader is the sum of observed Operational Taxonomic Units (OTUs).

Y Good’s coverage (Coverage) refers to the coverage of the detection and sequencing of the species.

¢ The OTUs is the number of observed OTUs for an OTU definition.
4 The Chaol estimator and.

¢ the Abundance-based Coverage (ACE) estimator are indexes to measure the species richness of the community.
f the Shannon index and & the Simpson index are indexes to measure the diversity of the community.
h the Pielous’ evenness index (Pielou) is index to measure species evenness for each community.
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Fig. 4. Changes in relative abundance of activated sludge microorganisms during the CSTR start-up and continuous operation stages. (a) analysis at the phylum level.
(b) analysis at the genus level of the "top 10" samples. Unidentified genera are named using higher taxonomic levels such as family (f ), order (0_), and kingdom (k_).

® COD 3000 mg/L.  ® COD 5000 mg/L
COD 4000 mg/L. @ COD 6000 mg/L
41 !
e Stage-I-1 !
® Stage-1-2
~ 2' H
X i
= ‘
U] '
@ |
Q 0 pH . COD
< COD removal* “\'\g
@ efficiency ~ Gas Hy
21
- 0 ' 4

RDALI (46.56%)

Fig. 5. Redundancy analysis (RDA) biplot depicting the relationship between
environment factors and microbial community (at the genus level) during CSTR
start-up and continuous operation. Colored dots represent the stage with the
influent COD concentration. Colored arrows indicate environmental factors,
and the length of the arrows indicates the effect of biochemical parameters on
the on the genera. The cosine value between the arrow links indicates the
correlation between them. The “envfit” function from the “vegan” R package
was used to testing of the correlation between genera and environmental fac-
tors. r? represents the proportion of the total variance in the response variable
that can be explained by the explanatory variable. the p-value is used to assess
the significance of the model. There are 108 genera > 0.6, p < 0.05) from
the activated sludge that are marked with gray dots. The detailed information is
shown in table S1.

Ethanoligenens has autoaggregation ability in activated sludge, which
helps to improve the settling performance of activated sludge and reduce
the loss of activated sludge (Ren et al., 2009). Ethanoligenens also has
excellent hydrogen production potential, with a maximum hydrogen
production yield of up to 2.14 mol Hy/mol glucose (Zhao et al., 2017). In

our study, Ethanoligenens became the dominant hydrogen-producing
genus in the activated sludge, ensuring continuous operation of the
reactor with high hydrogen production.

In addition to Ethanoligenens, a large number of hydrogen
production-associated microorganisms were enriched by activated
sludge acclimation in our reactor operation, such as Enterobacter (Zhang
et al., 2011), Caproiciproducens (Flaiz et al., 2020), Raoultella (Wang
etal., 2019), Pectinatus (Castello et al., 2009), Megasphaera (Kalia, 2015;
Ohnishi et al., 2012; Prabhu et al., 2012), Clostridium sensu stricto (Chi
et al., 2018) and Caproicibacter (Flaiz et al., 2020). The sum of the
relative abundance of all these dominant hydrogen-producing commu-
nities were 46.06% in Stage-II and 46.95% in Stage-III, respectively. This
suggests that the enrichment of various hydrogen-producing bacteria
increased the diversity and ecological stability of the
hydrogen-producing activated sludge in the reactor.

By comparing the dominant hydrogen-producing community in
reactor operation with that at the stage Pre-III, we find that the
hydrogen-producing associated flora showed an obvious increase in
abundance during reactor operation (Fig. 4b). The total abundance of
hydrogen-producing genera was induced to 43.19% in the Stage-I-1,
which was much higher than that (0.05%) in the stage Pre-III of multi-
ple pretreatments (Fig. 4b). For example, the abundance of Clostridium
sensu stricto was significantly increased to 5.95% at the beginning of
Stage-I-1 (Fig. 4b). Clostridium sensu stricto mainly contributes to butyric
acid-type fermentation (Zhao et al., 2022). This was consistent with our
findings that the higher butyric acid was detected in the beginning of
Stage-I-1 (Table 2). Therefore, our pretreatment and reactor operation
have successfully enriched the hydrogen-producing bacteria, and then
switched from butyric acid-type fermentation to ethanol-type
fermentation.

Additionally, the hydrogen-producing community analysis indicated
that propionic acid-type fermentation related Prevotella and Propionis-
pira were enriched in Stage-IV with excessive influent COD concentra-
tion (Fig. 4b). Prevotella and Propionispira have been found in the
conditions with higher influent COD concentration, which competes
with hydrogen-producing bacteria for substrates and consumes
hydrogen (Lim et al., 2014). Thus, we suggest that the enrichment of
propionic acid-type fermentation bacteria causes the decrease in the
hydrogen-producing ability of the reactor.
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3.4. Relationship between the bacterial community and the environment
factors in CSTR

Throughout the activated sludge acclimation period, a total of 352
genera were identified. Out of these, 180 genera exhibited a positive
correlation with the hydrogen production rate, while 172 genera
showed a negative correlation (Supplemental table S2). Notably, during
the period of increased hydrogen production capacity, from Stage-I to
Stage-III, 109 genera showed a positive correlation while 165 genera
exhibited a negative correlation with the hydrogen production rate
(Supplemental table S2). Among them, 100 genera showed a positive
correlation during the acclimation period (Stage-I to Stage-IV) and the
period of hydrogen production increase (Stage-I to Stage-III) (Supple-
mental table S2). These included the representative hydrogen-producing
bacteria, such as Pectinatus (Castello et al., 2009), Enterococcus (Zhang
et al., 2011), Syntrophomonas (Lozano et al., 2023), Caloramator (Cir-
anna et al., 2014), Odoribacter (Goker et al., 2011), Phocaeicola (Miebach
et al., 2023), Clostridium XIVa (Gong et al., 2021), Victivallis (Yi et al.,
2017), and Bacteroides (Ichikawa et al., 2023). These bacteria may
contribute significantly to the variation in hydrogen production capac-
ity. For example, Enterococcus faecium INET2 has been reported to have
the ability to adjust its fermentation type under different pH conditions
(Yin and Wang, 2019). Additionally, the 100 genera included a signifi-
cant number of bacteria related to hydrogen production, such as Pro-
pionispira for reversible hydrogen production (Thompson et al., 1984),
Acetanaerobacterium for carbohydrate degradation (Su et al., 2018),
Akkermansia for cysteine production (Ottman et al., 2017), as well as
Turicibacter and Acetatifactor for organic acid production (Zhong et al.,
2015; Pfeiffer et al., 2012). Interestingly, 78 genera were exclusively
identified at Stage-IV (Supplemental table S2). These included low
abundance Sporacetigenium (Chen et al., 2006), Opitutus (Goker et al.,
2011), and Acetivibrio (Mai et al., 2023) for hydrogen-producing bac-
teria, and Dialister for inhibiting hydrogen production (Kim et al., 2023),
as well as high abundance Schleiferilactobacillus for protein degradation
(Zheng et al., 2021). There were 27 genera of species were negatively
correlated with hydrogen production rate at Stage-IV (hydrogen pro-
duction decrease period), such as Prevotella and Leuconostoc competing
with hydrogen producing bacteria (Lim et al., 2014; Stiles, 1994), as
well as hydrogen-consuming Streptomyces (Collins and Gaines, 1964),
Hydrogenophaga (Suzuki et al., 2014), and Rhizobium (O’Brian and
Maier, 1988). These Stage-IV specific or negatively correlated bacteria
may be one of the reasons for the decline in hydrogen production.

To better depict the relationship between the activated sludge
community and environmental factors in CSTR, the RDA was performed
(Fig. 5). The explanatory variables accounted for 70.14 %, which sug-
gest that CSTR operation parameters could explain 70.14 % of the
variation in the microbial community structure (Fig. 5).

RDA showed that most sample points in each stage were closely
spaced (Fig. 5). For example, Stage-I-1 and Stage-I-2, Stage-I1I-2 and
Stage-II-3, as well as three points in Stage III and Stage IV have close
distribution, respectively. This indicated that each stage has relatively
stable microbial community. However, Stage-II-1 located between
Stage-I-2 and Stage-II-2, implying that Stage-II-1 is the transition
period from Stage-I to Stage-II (Fig. 5). In addition, most of the sample
points of Stage-II and Stage-III were close to each other, indicating that
the two stages have similar and stable microbial communities for
hydrogen production (Fig. 5).

RDA revealed that effluent COD concentration (r* = 0.9; p = 0.002),
effluent pH = 0.8; p = 0.002), and H; production = 0.6;p =0.039)
significantly affected the microbial community (Fig. 5). The concen-
tration of effluent COD and pH displayed slight angles with the RDA1
axis, indicating their crucial involvement in the alteration of the mi-
crobial population.

The RDA demonstrated significant correlation between environ-
mental factors and a total of 134 genera containing dominant hydrogen-
producing bacteria  Ethanoligenens, Pectinatus, and Raoultella
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(Supplemental table S3). In addition to the three bacteria, several
hydrogen-producing bacteria with low abundances were also included,
such as Aeromonas (Cho et al., 2018), Clostridium XIVa (Lin et al., 2018),
and Fermentimonas (Wang et al., 2023). The increased functional flora
diversity capable of producing hydrogen could enhance stability of
continuous hydrogen production systems. Therefore, the RDA further
indicates that, after undergoing multiple pretreatments and acclimation
in a CSTR, the activated sludge enriched a diverse range of
hydrogen-producing microorganisms and restructured the microbial
community involved in hydrogen production.

4. Conclusion

The pretreatment of activated sludge and the control of operating
parameters are critical for the operation of hydrogen-producing re-
actors. In the current study, the multiple pretreatments of micro-
aeration, alkaline and thermal conditions were applied to the acti-
vated sludge for hydrogen-producing reactor operation. Proteobacteria,
Firmicutes and Bacteroidetes were successfully enriched in the activated
sludge after the multiple pretreatments, contributing in the formation of
a novel microbial community structure.

The CSTR, which was inoculated with pretreated activated sludge,
continuously produced hydrogen at rates of 8.19 L/d and 9.33 L/d under
controlled influent COD levels of 4000 mg/L and 5000 mg/L, respec-
tively. The effluent pH during these high-efficiency hydrogen produc-
tion stages of the CSTR operation ranged between 4.35 and 4.92. The
primary bacterial genus responsible for hydrogen production was
Ethanoligenens, and hydrogen-producing related flora accounted for
approximately 46.95% of the total relative abundance during these
stages. From Stage-I to Stage-III, 100 genera showed a positive corre-
lation with the hydrogen production, which included the representative
hydrogen-producing bacteria Pectinatus, Enterococcus, Syntrophomonas,
Caloramator, Odoribacter, Phocaeicola, Clostridium XIVa, Victivallis, and
Bacteroides. The RDA also pointed that the multiple pretreatments and
reactor operation facilitated to the enrichment and reconstruction of the
hydrogen-producing flora in the activated sludge in the hydrogen-
producing reactor.
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