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A B S T R A C T

Understanding the intricate link between water availability and vegetation growth is crucial for preserving 
ecosystem vitality and facilitating global carbon cycling. The Yangtze River Basin (YRB) features vast subtropical 
forests, which are vital for global hydrological, carbon, and energy flows. Investigating the influence of the water 
supply on vegetation dynamics in this basin is crucial, particularly in light of the challenges posed by climate 
change. However, the response of vegetation to different water sources remains poorly understood. To address 
this gap, this study explores the influence of precipitation, surface runoff, and soil water on vegetation growth in 
the YRB via hydrologic modelling and remote sensing data from 2003 to 2021. The results revealed a decreasing 
trend in drought-prone areas. The overall vegetation growth has progressively improved despite challenges 
posed by water scarcity. More areas in the YRB are affected by water shortages than surpluses in terms of 
vegetation growth. During the growing season, vegetation is primarily affected by water shortage, although in 
exceptional cases, it is constrained by excess water, which typically occurs during the nongrowing season. In the 
upper and middle Jinsha River Basin, vegetation growth is primarily restricted by water surpluses, while in the 
middle and lower YRB, constraints commonly arise from water deficits. Additionally, surface runoff and soil 
moisture play more significant roles in influencing vegetation growth than precipitation. By revealing the dy
namics of the vegetation–water correlation, our research aims to provide valuable insights for managing the 
dynamic balance between water and vegetation in subtropical regions.

1. Introduction

Vegetation growth is influenced by nuanced fluctuations in water 
availability (Mitchell et al., 2016). As vegetation adapts to these con
ditions, it triggers physiological responses, affecting hydrological, car
bon, and energy flows regionally and globally (Jung et al., 2010; 
Humphrey et al., 2018). Among temperature, radiation, and water, the 
latter is considered to have the most significant impact on reducing 
vegetation productivity under climate change (Nemani et al., 2003; 
Reichstein et al., 2007). For example, a rapid flood results in nutrient 
loss from waterlogging (Blom, 1999; Kreuzwieser and Rennenberg, 
2014), whereas a flash drought causes functional impairment from 
water scarcity (Allen et al., 2015). Therefore, considering both excessive 

and deficient water is essential for understanding vegetation growth in 
response to water availability.

More research has focused on the gradual response of vegetation to 
changes in water availability than on its response to anomalous water 
supplies (Tang et al., 2024). The vegetation water supply is a complex 
system that integrates atmospheric, hydrological, and soil moisture 
processes. However, recent research has focused mostly on vegetation 
dynamics from the perspective of single water sources, such as precip
itation (e.g., Lawal et al., 2019; Smith and Boers, 2023), hydrological 
runoff (e.g., Peña-Angulo et al., 2021; Seka et al., 2022), and soil 
moisture (e.g., Chang et al., 2023; Du et al., 2023). Additionally, the 
response of vegetation to different water supplies remains unclear. This 
includes the process of vegetation adaptation under external water 
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pressure, encompassing both the duration and severity of its produc
tivity variations. Given this knowledge gap, we compared how different 
water sources, including precipitation, surface runoff, and soil water, 
impact vegetation growth. Furthermore, variations in vegetation water 
use efficiency, driven by factors such as hydraulic traits (Sperry and 
Love, 2015; Anderegg et al., 2018) and regional topography (Wang 
et al., 2021a), pose challenges in the long-term quantification of the 
relationships between vegetation and available water in large water
sheds. While correlations between vegetation indicators and drought 
indices are commonly used to assess this relationship at regional or 
broader scales (e.g., Schwalm et al., 2017; Peña-Angulo et al., 2021), 
these variations complicate the accuracy of such assessments.

The Yangtze River Basin (YRB), one of China’s most significant 
geographical features, stands out globally for its vast subtropical forests 
(FAO, 2020), which exhibit higher average productivity than forests at 
similar latitudes and in other Asian tropical regions (Yu et al., 2014). 
However, severe droughts in subtropical regions often occur unexpect
edly early (Ji et al., 2024), and the YRB is considered ecologically fragile 
(Yang et al., 2024) and is recognized as a climate-sensitive area (Qu 
et al., 2020). For example, the summer heavy rainfall in the YRB in 2020 
caused vegetation root waterlogging and hypoxia due to flooding (Zhou 
et al., 2021). In contrast, the combined drought-heatwave event in the 
summer of 2022 led to soil moisture scarcity, resulting in a 300 % in
crease in affected vegetation area compared to earlier in the year (Liu 
et al., 2023). Therefore, under climate change, investigating the dy
namic impacts of the water supply on vegetation has significant impli
cations for ecological security in the YRB.

Building on the importance of understanding the water supply’s 
impact on vegetation under climate change, this study sheds light on 
how precipitation, runoff, and soil moisture collectively shape vegeta
tion growth by considering both their individual and interactive effects. 
The Soil and Water Assessment Tool (SWAT) model was constructed to 
acquire data on precipitation, runoff, and soil moisture within the YRB. 
Three water availability indices, the standardized precipitation index 
(SPI), standardized runoff index (SRI), and standardized soil moisture 
index (SSI), were subsequently derived from these variables, whereas 
vegetation anomalies were assessed using standardized deviation 
derived from remotely-sensed Normalized Difference Vegetation Index 
(NDVI) data, referred to as SNDVI. Finally, this study links water 
availability indices with the vegetation index to investigate the spatio
temporal dynamics of the vegetation response to water availability from 
2003 to 2021 within the YRB. The findings offer new insights into the 
relationships between vegetation and available water management, as 
well as ecological conservation in subtropical regions.

2. Study area and datasets

2.1. Study area

The YRB encompasses a diverse array of microclimates and vegeta
tion ecosystems across its regions, extending from the high-elevation 
Qinghai–Tibet Plateau in western China to the low-lying Yangtze Plain 
in the east (Zhang et al., 2022) (Fig. 1). Precipitation in the YRB is 
strongly influenced by monsoonal patterns, resulting in significantly 
greater annual precipitation than in regions at similar latitudes (Wei 
et al., 2020). Moreover, the frequency of heavy precipitation events in 
the YRB has increased in recent decades (Hu et al., 2021), a trend linked 
to diminished vegetation productivity (Smith and Boers, 2023). More
over, the YRB is one of the most biologically diverse and ecologically 
significant regions in China, encompasses vegetation types from alpine 
meadows and coniferous forests in the upper basin to subtropical and 
tropical forests in the lower reaches (Qu et al., 2020). Along riverbanks 
and floodplains, there are extensive wetlands and marshes, which pro
vide important habitats for wetland vegetation (Yang et al., 2024).

2.2. Vegetation index data

Vegetation growth from 2003 to 2021 was assessed in this study 
using the Aqua MODIS-derived monthly vegetation product, MYD13A3 
v061 (https://lpdaac.usgs.gov/products/myd13a3v061/), with NDVI at 
a 1 km resolution serving as a proxy. This product is generated using 
advanced quality control techniques, including enhanced cloud and 
atmospheric corrections, to improve data reliability and minimize er
rors, particularly in areas frequently affected by cloud cover and at
mospheric interference. Monthly NDVI data is consistently available 
from 2003, covering all 12 months of the year, with pixel values aver
aged within each subbasin to obtain values for 125 subbasins. The 
available water data, obtained through the SWAT model, ends in 2021. 
To align the datasets, this study focuses on the 2003–2021 period, 
during which multiple extreme drought events occurred (Zhang et al., 
2015; Wang et al., 2020).

2.3. Precipitation, runoff, and soil water data

Precipitation, runoff, and soil water data across the YRB from 2003 
to 2021 were obtained from SWAT model, simulated on a daily basis and 
then averaged to obtain monthly data. The data are structured into 125 
subbasins, which are the spatial units that serve as a key organizational 
framework for outputs in the SWAT model. As a semi-distributed hy
drological model, SWAT simulates hydrological processes based on 

Fig. 1. The geographical distribution of the study area within the YRB.
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physical mechanisms and is well-suited for large, complex watersheds 
(Gassman et al., 2007; Abbaspour et al., 2015). Although SWAT requires 
extensive data and is sensitive to parameters (Arnold et al., 2012), these 
features enable it to capture complex hydrological and environmental 
processes, making it a powerful tool in research on hydrological pro
cesses (Douglas-Mankin et al., 2010).

The SWAT modelling system for the YRB was previously developed 
and applied in studies by Sun et al. (2019) and Zhang et al. (2023a). 
Details on the model configuration and other specifics are available in 
these studies, with a brief summary of the data-related aspects in this 
study provided here. Daily precipitation data from 148 meteorological 
stations were interpolated into 125 subbasins via the Thiessen polygon 
method. Daily runoff data for the 125 subbasins were derived from 
SWAT-simulated streamflow, which includes both surface runoff and 
subsurface flow transmission to the river channels. Soil moisture data 
are derived by considering the average root depth of vegetation (Yang 
et al., 2016), incorporating the heterogeneity of the soil layer, and 
driven by soil characteristics to estimate infiltration within the 1-meter 
soil layer. Compared to site monitoring, which cannot provide long- 
term, large-scale data (Sun et al., 2022), and remote sensing, which is 
limited to shallow soil moisture (1–5 cm) (Juglea et al., 2010), SWAT 
offers spatiotemporally continuous soil moisture data at the large 
watershed scale (Li et al., 2009; Chen et al., 2011).

3. Methodology

3.1. Standardized vegetation anomaly index

In this study, we employ the standardized NDVI (SNDVI) to identify 
vegetation anomalies. This index removes seasonal effects, enhancing 
vegetation status assessment and revealing vegetation dynamics. By 
reflecting the position of the current observation within its historical 
distribution, it captures and quantifies vegetation anomalies. As such, it 
is considered a reliable method (Meroni et al., 2019).

The standardized deviation (z score) of the NDVI forms the basis of 
the SNDVI, as depicted below: 

Z =
NDVIi − μi

Si
(1) 

where NDVIi is the NDVI value for month i from 2003 to 2021, μi is the 
average NDVI for the i month during the study period, and Si represents 
the standard deviation of NDVI for the month i and is calculated as 
follows (2): 

Si =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

n − 1
∑n

i=1

⃒
⃒NDVIij − μi

⃒
⃒2

√

(2) 

where n = 19 denotes the number of years studied.
A positive value indicates a greater NDVI than the monthly average 

from 2003 to 2021, suggesting favourable vegetation growth. 
Conversely, a negative value implies poorer vegetation conditions. 
Table 1 summarizes the vegetation classification. The SNDVI values are 
categorized as either below normal or above normal based on specific 
thresholds, referenced from Meroni et al. (2019), and adjusted to fit the 
distribution of the annual average SNDVI in the YRB. The distribution 

ranges from − 2 to 2, with most values concentrated between − 1 and 1. 
A 0.5 interval is applied within the range of − 1 to 1 to refine the 
anomaly distribution, while a 1.0 interval is applied to the range |x| ∈
[1, 2] to avoid over-segmentation, aiding in the identification of areas 
with abnormal vegetation growth or decline.

3.2. Standardized drought index

The Standardized Indices (SI) are simple and effective tools for 
measuring drought (McKee et al., 1993; Mishra and Singh, 2010). By 
using a unified statistical approach, they enhance comparability across 
different water supplies and avoid assumption conflicts between various 
drought methods (Farahmand and AghaKouchak, 2015), enabling a 
consistent comparison of vegetation responses to varying moisture 
conditions. By applying the standardized index method, we calculated 
monthly water availability indicators, including the SPI (representing 
meteorological drought), the SRI (indicating hydrological drought), and 
the SSI (reflecting agricultural drought).

Taking SPI as an example, the process is as follows:
First, the precipitation accumulation P(t) for month t is calculated via 

Equation (3): 

P(t) =
∑t

t− 2
w(t), (3) 

where t represents one month over the study period (2003–2021) and 
where w(t) represents the precipitation data for that month. Then, for 
each month m over all study years Y, obtain the set of all P(t) values 
according to Equation (4): 

S(m) = [P(m),P(1 × 12 + m),…,P((Y − 1) × 12 + m)], (4) 

Consequently, S(m) is computed by exercising the empirical Grin
gorten plotting position, as shown in Equation (5): 

Gm(r) =
rm − 0.44
Y + 0.12

, (5) 

where rm is the rank of the S(m) value and where Gm(r) is the plotting 
position of the data sequence r at month m. The cumulative distribution 
function of Gm(r) can be transformed into a standard normal distribution 
via the function Φ, as shown in Equation (6): 

SPIm = Φ− 1(Gm), (6) 

where SPIm represents the standardized precipitation index for month m. 
The calculations of the SRI and SSI follow a similar procedure as the SPI, 
replacing precipitation data with runoff and soil moisture data, 
respectively.

Notably, a 3-month time scale was employed to evaluate short-term 
water availability in this study because the correlation between the 
available water index and vegetation index is optimal (Ji and Peters, 
2003) for studying the response of vegetation to available water. In 
assessing drought conditions across the YRB, drought classification is 
based on the SI values according to McKee et al. (1993). SI values of 
− 1.50 to − 1.99 indicate “severe drought”, − 1.00 to − 1.49 represent 
“moderate drought”, 0 to − 0.99 denote “mild drought”, 0 to 0.99 indi
cate “mild humidity”, and 1.00 to 1.49 signify “moderate humidity”.

3.3. Correlation analysis

The Spearman rank correlation method was selected to explore the 
relationship between vegetation and water availability. This method 
captures both linear and nonlinear associations (Schober et al., 2018; 
Hauke and Kossowski, 2011), is well-suited for analysing NDVI anom
alies (SNDVI) with SPI, SRI, or SSI without assuming linear correlations. 
Through Spearman correlation analysis, we derived the correlations 
between SNDVI and the three indices—SPI, SRI, and SSI—using the 

Table 1 
Specific categorization of vegetation condition.

SNDVI Vegetation Condition

− 1 to − 2 Severely below normal
− 0.5 to − 0.99 Moderately below normal
0 to − 0.49 Slightly below normal
0 to 0.49 Slightly above normal
0.5 to 0.99 Moderately above normal
1 to 2 Extremely above normal
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correlation coefficients r(SNDVI, SPI), r(SNDVI, SRI), and r(SNDVI, SSI), 
respectively.

To compare the effects of different water supplies on vegetation in 
the YRB, we build upon the framework established by Jiao et al. (2021). 
We categorize the correlation between SNDVI and water availability 
indices (SPI, SRI, and SSI) into three distinct scenarios. The first scenario 
is termed “vegetation water deficit restriction”, in which SNDVI shows a 
significant positive correlation with SPI, SRI, or SSI (p < 0.05). This 
indicates that an increase in precipitation, runoff, or soil moisture im
proves vegetation health, whereas a decrease in water supply restricts it. 
The second scenario is defined as “vegetation water surplus limitation”, 
in which SNDVI exhibits a significant negative correlation with SPI, SRI, 
or SSI (p < 0.05). In this case, a decrease in precipitation, runoff, or soil 
moisture enhances vegetation health, while an increase in water avail
ability limits it. The third scenario reflects a lack of significant correla
tion (p > 0.05), suggesting that vegetation growth is constrained neither 
by water deficit nor by water surplus in specific regions. This absence of 
correlation may be attributed to human impacts (Wang et al., 2021b).

3.4. Mann–Kendall (MK) method

To analyse trends in the vegetation–water relationship, we utilize a 
nonparametric approach, the Mann–Kendall (MK) method (Kendall, 
1975), which aids in detecting regional drought and plant cover dy
namics. During trend identification, both the MK’s tau and the p value 
should be considered (Sun et al., 2019); hence, five trend categories 
were taken (see Table 2) to help summarize the trend analysis outcomes. 
The declining (negative) trends of the vegetation–moisture correlation 
suggest a preference for vegetation growth to be constrained by water 
surplus. Conversely, the increasing (positive) trends indicate that 
vegetation is susceptible to water deficit.

3.5. BRT analysis

To investigate the primary contributors and distinct mechanisms of 
available water on vegetation growth, we employ the boosted regression 
tree (BRT) model. This method excels in capturing irregular relation
ships and is widely used for predicting dependent variables and quan
tifying their responses (De’ath, 2007; Wu et al., 2020). In our study, the 
SPI, SRI, and SSI are dimensionless indices obtained through the same 
methodology, enabling a more precise comparison of their impacts on 
the SNDVI via R software. We estimated the impact of SPI, SRI, and SSI 
on SNDVI distributions using the “dismo” package in R and minimized 
losses to ensure efficiency using the “gbm” package. Testing revealed 
that for the dataset of vegetation and drought indices, using a learning 
rate of 0.0001 can steadily improve and capture the true trends. A tree 
complexity of 5 and a bag fraction of 0.5 ensure computational effi
ciency and model reliability.

4. Results

4.1. Dynamics of the SPI, SRI, SSI and SNDVI from 2003 to 2021

Combining the SPI, SRI, and SSI, a general decreasing trend is 

observed in drought-prone areas within the YRB from 2003 to 2021. As 
shown in Fig. 2a–c, mild drought and wetness were prevalent in the YRB 
during this period. Mild hydrological drought peaked in 2006, affecting 
approximately 69.92 % of the area (Fig. 2b). In 2013, both mild mete
orological and agricultural droughts peaked, impacting approximately 
75.70 % and 70.89 % of the region, respectively (Fig. 2a and c).

Under varying drought conditions, the SPI, SRI, and SSI indices show 
significant differences. In mild drought conditions, the SPI curve ex
hibits the largest fluctuation amplitude (Fig. 2a). The area of mild 
drought for SPI reached a maximum of 75.70 %, higher than SRI at 
69.92 % and SSI at 70.89 %, and a minimum of 16.29 %, lower than SRI 
at 20.48 % and SSI at 29.42 % (Fig. 2a–c). In contrast, under moderate 
drought conditions, the mean areas affected by SRI (4.01 %) and SSI 
(2.88 %) are larger than those affected by SPI (1.41 %) (Fig. 2a–c). 
Moreover, mild drought and mild humidity curves show more frequent 
intersections in SSI, around 12 times, than in SPI (4 times) and SRI (5 
times) (Fig. 2a–c).

Overall, vegetation growth in the YRB has gradually improved. From 
2003 to 2021, the vegetation status transitioned from negative to posi
tive anomalies, with the area of negative anomalies decreasing from 
97.42 % in 2003 to 0.64 % in 2021 (Fig. 2d). Notably, after 2012, 
positive anomalies became dominant, and in 2013, the area of positive 
anomalies first surpassed that of negative anomalies, reaching 65.15 % 
(Fig. 2d). This trend is consistent with the shift in drought status around 
2012, transitioning from drought-dominated to nondrought-dominated 
conditions in the YRB (Fig. 2a–c). Specifically, the average drought 
area before 2012 in SPI, SRI, and SSI was around 64.42 %, 61.87 %, and 
56.82 %, respectively, while in 2012 and the years following, it was 
around 41.32 %, 40.74 %, and 44.89 %, respectively (Fig. 2a–c).

Most vegetation in the YRB experienced mild anomalies. Specifically, 
in 2011, slightly negative anomalies peaked, with nearly 65.98 % of the 
areas showing mildly damaged vegetation (Fig. 2d), whereas slightly 
positive anomalies peaked in 2014, with approximately 75.79 % of the 
YRB showing improved vegetation health (Fig. 2d). This is closely 
related to the moisture supply for vegetation. As shown in Fig. 2a and b, 
in 2011, both the SPI and SRI drought areas exhibited high values of 
70.25 % and 70.06 %, respectively. These values indicate relatively 
intense drought, characterized by insufficient precipitation and runoff, 
which contributed to widespread vegetation damage, with around 
77.31 % of the vegetation below normal (Fig. 2d). In contrast, in 2014, 
most basins experienced nondrought conditions. Specifically, the SPI 
showed 49.91 % of the area as nondrought, the SRI was at 51.92 %, and 
the SSI at 68.05 % (Fig. 2a–c), with sufficient moisture availability for 
vegetation recovery, and nearly 84.07 % of the area above normal 
(Fig. 2d).

4.2. Correlation dynamics between the SNDVI and drought indices

4.2.1. Long-term trend of temporal variation in correlation
We conducted regional statistics on the extent of “vegetation water 

deficit restriction” (positive correlation, p < 0.05) and “vegetation water 
surplus limitation” (negative correlation, p < 0.05) in 125 subbasins 
from 2003 to 2021 (Fig. 3a–c), which included statistical analysis of r 
(SNDVI, SPI), r(SNDVI, SRI), and r(SNDVI, SSI). To perform trend 
analysis, we applied a 5-year moving average to smooth the data and 
used linear regression to identify trends.

In the correlation curves between SNDVI and SPI, SRI, and SSI, the 
area proportion of vegetation growth under water deficit constraints is 
generally higher than that under surplus conditions (Fig. 3a–c). Specif
ically, the constraint of precipitation scarcity on vegetation growth in 
the YRB shows an upward trend, as indicated by the area proportion 
where greenery was disturbed by precipitation shortages in the r(SNDVI, 
SPI) curve, with an annual rate of increase of 0.12 % (Fig. 3a). In 
contrast, a decreasing trend is observed in the restrictions of runoff and 
soil moisture deficiency on vegetation productivity in the YRB (Fig. 3b 
and c). This is reflected in the r(SNDVI, SRI) and r(SNDVI, SSI) curves, 

Table 2 
Refined Categorization of the MK Trend Analysis Results.

Characteristics Trend Symbols Tau P value

Strong decreasing − 2 τ < 0 p ≤ 0.01
increasing 2 τ ≥ 0

Moderate decreasing − 1 τ < 0 0.01 < p ≤ 0.05
increasing 1 τ ≥ 0

No sign. no 0 ​ p > 0.05
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where a downward trend is seen in areas where vegetation is limited by 
runoff and soil water scarcity, with annual decrease rates in the area 
proportion of 0.16 % and 0.44 %, respectively (Fig. 3b and c).

Furthermore, the impediment to vegetation vitality by water surplus 
gradually increased in the YRB, with areas experiencing runoff surplus 
showing a particularly rapid increase. As shown in Fig. 3a–c, regions 
where vegetation is restricted by excess water exhibit a gradual but 
steady upwards trend. Notably, the curve representing the area pro
portion of vegetation reduction due to precipitation surplus in the r 
(SNDVI, SPI) exhibited the slowest growth rate, with the affected area 
proportion increasing by only 0.06 % per year (Fig. 3a). In contrast, the 
curve indicating the area proportion of vegetation stress caused by 
runoff surplus in the r(SNDVI, SRI) shows a significant growth rate, 
supported by an R-squared value of 0.83 and an annual increase of 0.21 
% (Fig. 3b).

4.2.2. Short-term fluctuations in temporal variations in correlations
To uncover short-term dynamics and seasonal patterns in the cor

relation, we examine monthly fluctuations in the relationships between 
NDVI anomalies (SNDVI) and available water indices (including the SPI, 
SRI, and SSI) from 2003 to 2021 (Fig. 3d–f).

From April to October, SNDVI showed predominantly positive cor
relations with available water indices (Fig. 3d–f). Periods during which 
the available water indices exhibited at least moderate positive corre
lations with SNDVI (average r > 0.37) included July to September 2006 
(3 months), August to October 2011 (3 months), July to November 2013 
(5 months), and September to December 2019 (4 months). Notably, the 
latter two periods extended into the winter months (Fig. 3d–f). Among 
the periods listed above, the positive r(SNDVI, SRI) persisted for the 
longest duration (Fig. 3d–f). For instance, it extended from July to 
December in 2006 (6 months), from August to January in 2013 (6 
months), and from September to February in 2019 (8 months) (Fig. 3e). 
Additionally, the r(SNDVI, SSI) exhibited relatively high correlations, 

with average r values of 0.55 (July to September 2006), 0.47 (August to 
October 2011), 0.45 (July to November 2013), and 0.58 (September to 
December 2019) (Fig. 3f).

However, in exceptional cases during the growing season, SNDVI 
exhibited negative correlations with available water indices, which 
typically occur during the nongrowing season. (Fig. 3d–f). Notably, 
persistent negative correlations between SNDVI and available water 
indices were observed from May to December 2020, averaging − 0.16 in 
r value (Fig. 3d–f). During this period, r(SNDVI, SRI) showed a stronger 
negative correlation, primarily in November and December 2020, with 
an average r value of − 0.41. Furthermore, the negative correlation in r 
(SNDVI, SSI) persisted for the longest duration, lasting from May 2020 to 
May 2021, totaling 13 months (Fig. 3f).

4.2.3. Characteristics of spatial variation in correlation
To understand the dynamic properties of the correlations in the 

spatial distribution of the YRB, the MK test was applied across 125 
subbasins from 2003 to 2021 (Fig. 4). In the upper YRB, a stronger 
negative correlation was observed in r(SNDVI, SSI), with a minimum of 
− 0.26 in its sub-basins, compared to r(SNDVI, SPI) and r(SNDVI, SRI), 
which had minimums of − 0.18 and − 0.09, respectively (Fig. 4a–c). 
These correlations primarily located in the upper and middle Jinsha 
River Basin and the western Min River Basin (Fig. 4a–c). Furthermore, in 
the upper and middle Jinsha River Basin, a patchy distribution of 
decreasing trends in r(SNDVI, SSI) was observed (Fig. 4i).

Additionally, more regions in the upper YRB exhibited positive 
correlations (Fig. 4a–c). In the Source Region of the Yangtze River, 
stronger positive correlations were observed in r(SNDVI, SPI) and r 
(SNDVI, SRI), with maximum r-values of 0.15 and 0.27 in its sub-basins, 
respectively, while r(SNDVI, SSI) showed a weaker positive correlation, 
peaking at 0.04 (Fig. 4a–c). In the southern basin of the Jinsha River, r 
(SNDVI, SSI) exhibited a relatively higher positive correlation, reaching 
a maximum of 0.64 (Fig. 4a–c). Similarly, in the northwestern Jialing 

Fig. 2. Drought area percentages and NDVI anomalies in the YRB from 2003 to 2021. Fig. 2a–c illustrate the water supply states of precipitation, runoff, and soil 
moisture in the YRB, respectively, depicted individually by the SPI (i.e., meteorological drought), SRI (i.e., hydrological drought), and SSI (i.e., agricultural drought). 
Fig. 2d shows the annual changes in vegetation conditions in the YRB based on the classification of the SNDVI values.
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River basin, r(SNDVI, SRI) displayed a stronger positive correlation, 
with its highest value at 0.47 (Fig. 4a–c).

Moving towards the middle and lower YRB, moderate positive cor
relations were observed in both the southern and northeastern regions, 
with r-values of approximately 0.30 (Fig. 4a–c). In the southern part of 
the middle YRB, r(SNDVI, SRI) exhibited a contiguous distribution of 
relatively high values, peaking at approximately 0.37 in a sub-basin 
(Fig. 4b). This value was higher than the maximum r(SNDVI, SPI) and 
r(SNDVI, SSI) values, which were approximately 0.36 and 0.23, 
respectively (Fig. 4a and c). In the northeastern part of the lower YRB, r 
(SNDVI, SSI) also showed a contiguous cluster of relatively high values 
(approximately 0.40), extending into the northern Poyang Lake basin 
(Fig. 4c). Furthermore, in the middle and lower reaches of the YRB, an 
increasing trend was observed in r(SNDVI, SPI), r(SNDVI, SRI), and r 
(SNDVI, SSI), particularly in the Dongting Lake basin (Fig. 4g–i). 
Moreover, in the southeastern parts of the YRB, such as the Poyang Lake 
basin, decreasing trends were observed in r(SNDVI, SRI) and r(SNDVI, 
SSI) (Fig. 4h and i).

4.3. Analysis of the impact of different drought types on vegetation

Using the BRT model, we conduct an analysis of the contributions of 

the SRI, SSI, and SPI to the NDVI anomalies (SNDVI) (Fig. 5). We find 
that the contributions of the three available water indices to vegetation 
growth, from highest to lowest, are the SRI (50 %), SSI (40 %), and SPI 
(10 %) (Fig. 5a). Specifically, the impact of the SPI on the SNDVI vari
ation is relatively small compared to the SRI and SSI (Fig. 5b). Addi
tionally, when SPI, SRI, and SSI increase from − 2 to nearly 0, the 
marginal effect curves of SNDVI exhibit stepwise increases, with these 
increases becoming more gradual after reaching 0 (Fig. 5b–d). As for the 
marginal effects of SRI and SSI, the shapes of the curves are similar, 
though their inflection points differ: the former is located to the right of 
− 1, while the latter is located to the left of − 1 (Fig. 5c and d).

5. Discussion

5.1. Comparison of vegetation responses to water constraints

We compared the responses of vegetation anomalies to water con
straints in the YRB, analyzing how water deficit and surplus limitations 
from diverse sources—precipitation, runoff, and soil moisture—affect 
vegetation growth across long-term, monthly, and spatial dynamics. The 
long-term response trends of vegetation anomalies to precipitation, 
runoff, and soil moisture surpluses or deficits differ from 2003 to 2021. 

Fig. 3. Long-term trends and short-term variations in the correlations between vegetation growth and water availability indices from 2003 to 2021. Fig. 3a–c use a 5- 
year moving window to display the trends of significant correlation areas in subbasins. The red line represents vegetation growth hindered by water scarcity (r > 0), 
whereas the blue line represents that prevented by water scarcity (r < 0). Fig. 3d–f present the r(SNDVI, SPI), r(SNDVI, SRI), and r(SNDVI, SSI) through heatmaps, 
where strongly positive values are depicted in dark red and highly negative values are depicted in navy blue.
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Fig. 4. Spatial distributions, significance and trends of vegetation‒water correlations in the YRB. Fig. 4a–c show the spatial distributions of the correlations between 
the SPI, SRI, and SSI and the SNDVI. Fig. 4d–f present the significance levels. Fig. 4g–i show the spatial dispersal of the coefficients in the MK trend, where the 
absolute values of the MK scores in “2″ and ”1″ separately reflect strong (above 99 % confidence) and moderate (between 95 % and 99 % confidence) extents. The 
positive mark is growth (filled in red), and the negative mark is reduction (in blue). There was no significant trend (in yellow), and the grade was “0″.

Fig. 5. The impact of three available water sources on vegetation dynamics. In Fig. 5a, the contributions of the SPI, SRI and SSI to the SNDVI are shown, summing to 
100%. Fig. 5b–d depict the marginal effects of the SPI, SRI and SSI on the SNDVI. The independent variables are the SPI, SRI, and SSI, whereas the dependent variable 
is the SNDVI.
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Only the positive correlation in the r(SNDVI, SPI) shows an increasing 
trend, indicating that vegetation growth is becoming increasingly 
limited by extended precipitation deficits, which may result from a 
reduction in precipitation frequency across the basin (Hu et al., 2021; 
Zhang et al., 2023b). However, the positive correlation in the r(SNDVI, 
SRI) and r(SNDVI, SSI) shows a decreasing trend in the YRB, indicating 
that the constraints of runoff and soil moisture deficiency on vegetation 
productivity are decreasing. This change may be related to the broader 
role of hydraulic infrastructure, such as the Three Gorges and Xiangjiaba 
Dams, which potentially mitigated soil moisture and runoff shortages, 
thereby alleviating water scarcity constraints on vegetation. In contrast, 
the most significant increase in the negative correlation of r(SNDVI, SRI) 
indicates that vegetation is increasingly constrained by runoff surpluses, 
likely due to rising frequency of extreme rainfall events that intensify 
waterlogging effects (Li et al., 2021).

The monthly correlation patterns reveal seasonal responses of 
vegetation to surplus and deficit constraints from diverse water sources. 
From April to October, the predominantly positive correlations between 
SNDVI and available water indices suggest that water deficits constrain 
vegetation growth during the growing season. Specifically, positive 
correlations observed during periods such as July to September 2006, 
August to October 2011, and September to December 2019 are consis
tent with drought events identified in previous studies (Wang et al., 
2020; Liu et al., 2023), and support the concept of “vegetation water 
deficit restriction”. Among these periods, the positive r(SNDVI, SRI) 
persisted for the longest duration, indicating that runoff shortage exerts 
a longer-lasting detriment to vegetation growth. Additionally, the pos
itive r(SNDVI, SSI) exhibited relatively high correlations, indicating that 
among diverse water sources, soil moisture scarcity has a greater 
limiting effect on vegetation growth. However, in exceptional cases 
during the growing season, negative correlations between SNDVI and 
available water indices were observed, suggesting that water surpluses 
limit vegetation dynamics. For example, the negative correlations 
observed from May to December 2020, coinciding with significant 
flooding (Zhou et al., 2021; Wei et al., 2020), validate the “vegetation 
water surplus limitation” concept. During this period, the negative 
correlation of r(SNDVI, SSI) persisted for the longest duration, indi
cating that soil moisture surplus exerts more enduring negative impacts 
and that such limitations exhibit more stable characteristics. Moreover, 
the negative r(SNDVI, SRI) showed a stronger negative correlation, 
indicating that among diverse water sources, runoff surplus imposes a 
greater limitation on vegetation growth.

The spatial responses of vegetation to water constraints vary, with 
regional differences in the surplus or deficit limitations imposed by 
specific water sources. In the upper YRB, r(SNDVI, SSI) showed a 
stronger negative correlation compared to r(SNDVI, SPI) and r(SNDVI, 
SRI), indicating that vegetation health is more adversely affected by soil 
moisture surplus. Furthermore, decreasing trends in r(SNDVI, SSI) were 
observed in a patchy distribution across the Jinsha River basins, indi
cating that vegetation growth tends to be restricted by the soil moisture 
surplus, which aligns with the findings of Sun et al. (2022) of lower 
agricultural drought intensity and frequency in Southwest China. In 
contrast, in the Source Region of the Yangtze River, stronger positive 
correlations were observed in r(SNDVI, SPI) and r(SNDVI, SRI), whereas 
r(SNDVI, SSI) showed a weak positive correlation, indicating that 
vegetation vitality is more constrained by precipitation and runoff def
icits. In the middle and lower YRB, an increasing trend between SNDVI 
and available water indices was observed, particularly in the Dongting 
Lake basin. This indicates that vegetation growth is increasingly con
strained by water scarcity; possibly resulting from earlier exposure of 
wetlands and runoff interception by the Three Gorges Reservoir (Huang 
et al., 2014). In contrast, in the southeastern parts of the YRB, such as the 
Poyang Lake basin, decreasing trends were observed in r(SNDVI, SRI) 
and r(SNDVI, SSI), implying that vegetation is increasingly hindered by 
water surplus, consistent with the rising hydrological impacts of flood 
disasters (Li and Zhang, 2015). In the southern part of the middle YRB, 

high positive r(SNDVI, SRI) exhibited a contiguous distribution, indi
cating that vegetation is primarily affected by runoff shortage. Mean
while, in the northeastern part of the lower YRB, high positive r(SNDVI, 
SSI) also showed a contiguous cluster, suggesting that soil moisture 
shortage plays a major role in limiting vegetation growth.

Interestingly, unlike studies emphasizing soil moisture and precipi
tation in vegetation dynamics (Lawal et al., 2019; Du et al., 2023), our 
results highlight the critical role of runoff in the YRB. Several key 
mechanisms are likely to explain these findings. First, unlike drought- 
resistant vegetation, which allocates significant nutrients to root 
development (Chaturvedi et al., 2021), plants in nonarid lands of the 
YRB invest less in their root systems. Furthermore, while vegetation root 
systems play crucial roles in water infiltration (Wu et al., 2016), the 
heterogeneous distribution of terrain and soil composition often hinders 
surface runoff from penetrating the soil in certain areas of a basin (Daly 
and Porporato, 2005), causing reduced soil moisture levels (Cui et al., 
2022) and challenges for vegetation in accessing soil moisture. Conse
quently, while soil moisture influences vegetation health (Seka et al., 
2022), direct water supply from runoff may exert a more significant 
influence.

5.2. Implications for management and future studies

In light of these insights, comprehensive water resource management 
strategies are imperative to ensure the resilience of vegetation growth 
and ecosystem functionality in the YRB. To scientifically regulate water 
resource allocation within the basin, rational use of reservoirs, water 
diversion, and regulation projects is essential (Guo et al., 2021). 
Therefore, effective water resource management schemes should be 
tailored regionally, considering local factors affecting vegetation 
growth. Specifically, in the upper Jinsha River, particularly in western 
Sichuan Province, improving soil drainage is crucial to mitigate the 
impact of excess soil moisture on vegetation. Meanwhile, in the upper 
YRB, which are expected to face more severe hydrological droughts 
(Liang et al., 2023), water conservation practices and efficient irrigation 
systems are vital to address vegetation growth constraints caused by 
precipitation and runoff deficits. In the southeastern parts of the YRB, 
integrated water management strategies, including optimized runoff 
regulation and targeted irrigation, are necessary to ensure sustainable 
vegetation growth (Xu et al., 2020).

This study offers insights that could inform future research on the 
interaction of diverse water sources and vegetation anomalies in the 
YRB. First, we employed the SWAT model to obtain soil moisture data, 
which ranges from 0 to 100 cm and is closely related to the vegetation 
root zone growth. However, future work could incorporate a more 
diverse dataset, such as remote sensing soil moisture data at a depth of 
0–5 cm. This integration would offer a more comprehensive under
standing of soil moisture dynamics. Second, we used SNDVI to capture 
vegetation anomalies under water stress, enabling us to analyze vege
tation responses to drought at a large basin scale. Future research could 
incorporate land use patterns to conduct more detailed studies on 
representative land cover types, such as forests, grasslands, and crop
lands, and their water limitations, including precipitation, runoff, and 
soil moisture deficit or surplus. Given the complex relationships be
tween available water indices (SPI, SRI, and SSI) and SNDVI, future 
work could focus on refining models that integrate multiple indices with 
vegetation health indicators. This would improve understanding of how 
different drought types impact vegetation over various time scales, with 
particular attention to seasonal fluctuations during critical growing 
periods. As climate change increases the frequency of extreme weather 
events, research could incorporate climate projections to assess the 
impact of future droughts on vegetation in the YRB.

6. Conclusion

The findings of this study underscore the interplay of 
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water–vegetation systems in the YRB, revealing that vegetation 
ecosystem stability is affected by water constraints. Through an analysis 
of water–vegetation interactions from 2003–2021, several key conclu
sions have been drawn: 

(1) More areas in the YRB are affected by water shortages than sur
pluses in terms of vegetation growth. The constraints of runoff 
and soil moisture deficiency on vegetation vitality are decreasing, 
while the restrictions due to water surplus, particularly runoff 
surplus, have gradually increased in the YRB. Vegetation faces 
diverse water limitations across seasonal growth periods. During 
the growing season, vegetation is primarily affected by water 
shortage, although in exceptional cases, it is constrained by 
excess water, which typically occurs during the nongrowing 
season. The negative impact of runoff scarcity and soil moisture 
surplus on greenery health are more enduring.

(2) In the upper and middle Jinsha River Basin and the western Min 
River Basin, vegetation growth is primarily restricted by soil 
moisture surplus, while in the southern Jinsha River Basin, soil 
moisture deficits impose even greater limitations. In the Source 
Region of the Yangtze River and the northwestern Jialing River 
basin, it is mainly driven by precipitation and runoff deficits. In 
the southern part of the middle YRB, vegetation is more con
strained by runoff surplus, whereas in the northeastern part of the 
lower YRB, soil moisture surplus has a stronger impact. In the 
southeastern YRB, including the Poyang Lake basin, vegetation 
growth tends to be constrained by water surplus.

(3) In the YRB, runoff (SRI) and soil moisture (SSI) play more sig
nificant roles in influencing vegetation growth than does pre
cipitation (SPI). The improved vegetation conditions primarily 
stem from the alleviation of hydrological drought, which has a 
substantial impact on vegetation growth. Vegetation is highly 
sensitive to hydrological and agricultural drought, with im
provements in vegetation occurring as drought conditions are 
slightly alleviated.
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