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Abstract This paper studies the parameter identi-
fication and time-delay estimation problem for the
nonlinear exponential autoregressive with exogenous
input (ExpARX) models. To overcome the limita-
tions of the traditional gradient algorithms, which have
slow convergence and low identification accuracy, this
paper proposes a modified predictive gradient algo-
rithm through using the multi-innovation theory. Due
to the extensive number of parameters, the time-delay
ExpARX model is segmented into two subsystems
by using the hierarchical principle. On the basis of
the detached parameters, a modified separable syn-
chronous predictive gradient algorithm is proposed.
Moreover, the convergence of the proposed algorithm
is proved. Through analyzing the computational effi-
ciency, it has been demonstrated that the decompo-
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sition principle reduces computational workload and
enhances computational efficiency. Finally, a simula-
tion example and a real-life example of piezoelectric
ceramics are used to verify the effectiveness of pro-
posed algorithms.

Keywords ExpARX models - Convergence analysis -
Redundant rule - Computational efficiency - Predictive
gradient

1 Introduction

In control systems, precise mathematical models are
essential for analysis and optimization, but the com-
plexity presents a significant challenge [1-3]. Sys-
tem identification technology uses measurement data
to solve optimization problems, minimizing input and
output errors to construct parametric models [4-6].
With advancements in automation technology, system
identification theory is widely applied in power sys-
tems, adaptive control systems, fault diagnosis, and
wireless communication systems [7-9]. Recently, var-
ious identification algorithms have been proposed for
different systems, including bilinear and nonlinear sys-
tems [10-12] and nonlinear systems [13—15].

In piezoelectric ceramic flow control systems, sys-
tem identification technology plays a crucial role in
constructing highly accurate nonlinear models [16].
By employing advanced system identification algo-
rithms, measurement data can be effectively utilized
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to extract the core parameters of the system, thereby
allowing for the construction of a nonlinear model that
better adapts to flow fluctuations and external distur-
bances [17]. Given the unique dynamic characteristics
of piezoelectric ceramics and the complex nonlinear
behavior during the flow control process, traditional
linear models often struggle to adequately and accu-
rately depict the actual response of the system [18].

In recent years, several nonlinear systems capa-
ble of accurately capturing random vibrations have
been successfully derived [19-21], among which the
most representative is the exponential autoregressive
with exogenous input (ExpARX) model. The ExpARX
model extends the traditional ARX framework and is
suitable for time series data with exponential growth or
decay. It effectively describes dynamic systems with
delay and step characteristics, particularly capturing
nonlinear behaviors like limit cycles and amplitude-
dependent frequency [22]. For exponential-type sys-
tems, various identification algorithms have been stud-
ied, including maximum likelihood, stochastic gradi-
ent, and variable projection algorithms [23,24]. How-
ever, most of contributions overlook the inevitable
intrinsical time-delay in the data transmission process,
which increases the complexity.

The separable least squares method is crucial for
identifying linear and nonlinear models, especially in
complex model identification. It decomposes parame-
ters into linear and nonlinear parts, reducing complex-
ity and improving computational efficiency. Thus, it is
also known as hierarchical identification [25-27]. By
separating parameters or models based on their charac-
teristics, this method reduces model scale and enables
more accurate joint estimation [28].

Traditional gradientidentification algorithms, which
include stochastic gradient algorithms, gradient itera-
tive algorithms and gradient descent algorithms, are
widely used in the system identification [29,30]. Tra-
ditional gradient algorithms may get stuck in local
optima, with identification accuracy significantly influ-
enced by initial parameters and learning rate settings
[31]. Compared to previous work [32,33], the proposed
algorithms effectively overcome the limitations of tra-
ditional gradient methods and address parameter iden-
tification for the time-delay ExpARX model. The main
contributions are as follows.

e To overcome the limitations of the traditional gra-
dient algorithms with slow convergence speed, an
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Fig.1 The ExpARX model

innovative threshold-free algorithm is proposed for
estimating the time-delay, without relying on the
empirical threshold selection used in the traditional
algorithms.

e To improve the identification accuracy, a redun-
dant rule-based multi-innovation predictive gradi-
ent (RR-MIPG) algorithm is proposed. Unlike the
traditional gradient algorithms, the RR-MIPG algo-
rithm effectively avoids local optima and addresses
parameter identification issues in nonlinear ExpARX
models.

e To reduce computational workload and enhance
computational efficiency, a separable synchronous
redundant rule-based multi-innovation predictive
gradient (SS-RR-MIPG) algorithm is proposed.

The structure of this paper is outlined as fol-
lows. Section?2 gives the system description. Section 3
presents the RR-MIPG algorithm. Section4 proposes
the SS-RR-MIPG algorithm. Section5 analyzes the
computational amounts. The convergence property is
analyzed in Sect. 6. In Sect.7, two examples are pro-
vided. Finally, some conclusions are given in Sect. 8.

2 System description

Consider the nonlinear time-delay exponential autore-
gressive with exogenous input (ExpARX) model depicted
in Fig. 1,
where u(t) and y(¢) are the input and output of the sys-
tem, v(¢) is a white noise with zero mean, and A(z) and
B(z) are the polynomials of the operator z~!, defined
as
ng
Al) =1+ Z (ai,1 + ai‘ze_”z(t_”)z"_”“_l,
i=1
np
B(@) =Y (b1 +bjne 7 (= 0)zimat,
j=1
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The time-delay ExpARX model is
ng
21—
Y6y ==Y (i +Eae D)
i=1
xy(t+i—ng—1-71)

iy

+> i+ njae 7Y D)
=1
xu(t + j =y — 1 =) + (1), (1)

where &; ; are linear parameters, 1; ; are nonlinear

parameters, y is an exponential parameter, ng and n,

are the model orders, and 7 is an unknown time-delay.
Define the parameters as

,'} = [0T y]T c R2n§+2nn+l
0 = [0”1:’ 0E]T c R2ng+2nn’

Oy :=1[&11,8.1, - &m0, 612,62, -~-,Eng,2]T
c R2n§’

0u = [011. 1200 - Myl M2 1220 -2 My 2]
e R,

Define the information vectors as
Cv2(—
$(t, 7. 7) i=loy(t,y,1),e " Vol y, 1),

2 (f—
@it y, D), e ol y, )"
eRan—i—Znn

(py(t, v, 1) = [—y(lt—ng—1),...,—yt —1-— l')]T
c R,

@, v, 1) =ult—ny—1),...,
u(t —ng +n, —1— )T e R™.

Then, Eq. (1) can be compactly written as the identifi-
cation model

y(t) = (t, ¥, )8 + v(1). )

Note that the information vector ¢ (z, y, T) contains the
variables y(t +i —n, —1—1),i =1,2,...,n, and
u(t+j—np—1—1),j =1,2,..., np, which cannotbe
determined due to the unknown time-delay . Hence,
the traditional algorithms cannot be used for the time-
delay ExpARX model. To address the difficulty, this
paper sets a maximum regression length N, extends
the redundant parameters to be identified together with
the parameter vector, and employs the redundant rule
to derive an augmented identification model.
Define the augmented parameter vectors

,"a — [02’ y]T c R4N+1’

0o :=107,.05,]" e R*,

0y i=lar, ..., 811,81, ...,

ne.1, 612,622, -

T _ 2N
S ooN—2n,] € R,

L) gng,Qs

41, .-

Oua :==[B1, - Bromiasmas -
My s M2, 112,25+« + 5 Ny 25
Brits .- Ban—om, It € RPY,

and the augmented information vectors

ba(t, ) == [0T, (1, 7). e 7 VT (2, ),
Ol (1, y). e T (1 )] e RV,
@yt y) i=[—yt —=N),...,—y(t —D]" e RY,
@t y) =[u@—N),...,u@t —1)]T e RV,
Then, Eq. (2) can be written as
V() =g (1, ¥)04 + v(0). 3)

The proposed parameter estimation algorithms in this
paper are based on the parameter identification model in
(3). Many identification methods are derived based on
the identification models of systems [34—37] and can be
used to estimate the parameters of other linear stochas-
tic systems and nonlinear stochastic systems [38—41]
and can be applied to other fields [42-46] such as
information processing and process control systems. In
practical applications, the observation model inevitably
includes a non-zero noise term. The characteristic pre-
vents the estimations of redundant parameters from
converging precisely to zero. The phenomenon can lead
to erroneous delay estimations because the interference
from non-zero noise disrupts the accurate identification
of delay parameters. As a result, it affects the overall
predictive accuracy and reliability of the model.

3 Redundant rule-based multi-innovation
predictive gradient algorithm

In dealing with the highly nonlinear dependence on
the parameter y and the complexity introduced by the
unknown time-delay 7 in (3), traditional algorithms
struggle to find direct solutions. To address the chal-
lenge innovatively, this section proposes the RR-MIPG
algorithm. The redundant rule-based multi-innovation
predictive gradient (RR-MIPG) algorithm not only
effectively tackles the nonlinearities within the model,
but also accurately captures and manages the unknown
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delay, thereby achieving precise estimation of model
parameters.
Define the output vector as

Y(p):=[y@),yt —1), ...yt — p+ DI e R,

where p is the innovation length.
Define the information matrices as

Vailp) =19, . y). ¢t =1, 7), ...,
¢, (t —p+1,)] € R?*P,
Pyu(p) =191, V), @yt —1,7), ...,
@1t —p+1, )] e RV,
Dua(p) = [Qua(t, V), @uat = 1,7), ...,
Pualt — p+1, )] e R*V¥P,

To determine the strategy of the RR-MIPG algorithm
[47], define the criterion function

()

J(@a) = —x 20+ = 1 Ava ) 1%, “4)

where x () is the output error, A, (t) = #,() —
#,(t — 1), and A(¢) is the weighting factor of model
based compensation.

Let the gradient of the criterion function with respect
to ¥#,(t) equal zero yields to get

Ba(t) =0 — 1) —r)x®O)x'(®), )
where 7 (1) = 1/A(t) and x'(r) = 22

Define the gradient g(¢) as
g(t) = =W (p)[Y(p) — ¥ (p)ba]. (6)

Similar to the memory gradient algorithm [48], define
the descent direction as

_g(t)9 = 1,
Y(@)=1{-e0)+c@YE—1) @)
—g(t — 1)], otherwise,
where
) = oz |l g@) |l

ly@—1D—gt—DI’
and o; > 01is a constant.

Based on the above equation, the predictive gradient
is constructed by the following autoregressive formula

e(r) = H(z g, (8)
where
HzY=14+hz"+

where n = ng = n,), and the coefficients of HZ™YH
are determlned by hy = 1, hp = 2¢(8), ..., hy, =
2[Tisg ¢t —

.. _{_hnz_n’
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Then, introducing the Diophantine equation

HeHYPE H+z7 0 =1, 9)
where

Pz Y =po+piz 4+ pa1z K,

0z H=qo+qz '+ +gurz"

Then, substituting (8) into (9) to derive the k-step-ahead
predictive gradient

Bu+h) =Y qt—1. (10)
From (6)—(7) and (10), it can be deduced that the gradi-
ent at time 7 +k is predicted solely based on the gradient

values acquired before time ¢. The predictive descent
direction can be derived as

n—1
V@ +k) =—ge+k)+ Y a@y@+k—1D),
=1
(an
£6) = o 1 8¢+ 4 | 1)

I +k—1)—gc+k—10) |

Remark 1 Compared with the traditional gradient algo-
rithms, the RR-MIPG algorithm can quickly escape
the current search path and flexibly adjust its direc-
tion when it detects that the current trajectory may lead
to a local optima by predicting the gradient direction
t + k steps ahead. The gradient prediction capability
allows the RR-MIPG algorithm to demonstrate greater
efficiency and stronger global search ability in complex
and dynamic optimization problems.

An optimization step-size is employed based on the
Goldstein inexact search.

AT
r(t) = p&T(t + P +k)’ (13)
LIY@+k |

where p > 0 is the convergence factor,

IIgA(t+k)tg(t+k—l) II} (14)
| Fa() —Fa— 1D || +A
is the Lipschitz constant, L* is a positive constant
used to prevent L from being zero, and A is a very
small positive number to ensure the denominator not
to be zero.

When 0 < ¢ < k, the proposed algorithm fails to
effectively compute 1/A/(t + k) and g(r + k), resulting
in inaccurate outcomes. To address the limitation and

L = max {L*,
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ensure data stability and integrity, simplified processing
measures have been implemented

2 HOIA0)

r(t) ~ .
L* | ¥ (1) ||?

5)

Remark 2 The aforementioned adjustments prevent
potential risks caused by data loss in the early stage of
the algorithm, enhancing reliability in practical appli-
cations and ensuring stable operation.

For the time-delay threshold estimation algorithms,
the identification performance is affected by the choice
of threshold, but currently it is no universally accepted
method for selecting the threshold.

Define
T+n - 2
3@ = ) 10,,(L) + 6, oy (D]
s=1+1
The time-delay estimation is
7 = argmax (1), (16)
T€0,...,Tmax
where Tax = N — n.
In summary, the RR-MIPG algorithm is

Ba(t) = Dot — 1) — r(DE + k), (17)
n—1

Bt +k) =) qit—D, (18)
=0

n—1

V@ +k) =—8e+hb)+ Y a@y@+k—0, (19

=1

a(t) = — o |l 8 ‘f: k) |l ’ 20)
ly@+k—0D—8+k—10|
6T J
) = P8 (tfr Ky (& + k) 21
L|¥@+k|?
L :max{L*, l gA(t+k)Tg(t+k_ 1) ||}’
| #a(@) —Pa@—1) || +A
(22)
7 = argmax (7). (23)

7€0,..., Tmax

Remark 3 Before using algorithms proposed in this
paper, itis necessary to accurately ascertain the order of
the system through methods such as orthogonalization
process, correlation analysis, and other order estima-
tion techniques to guarantee the accuracy and effec-
tiveness of the algorithm.

Algorithm 1 summarizes the steps for computing the
estimates #,(#) by the RR-MIPG algorithm.

Algorithm 1 RR-MIPG algorithm

Require: Set the maximum iteration f,,,, time-delay t, predic-
tion horizon k = 2.
Ensure: #,(t)
1: fort = 1do
2:  if 0 <t < d then
Compute g(z) by (6)
Update ¥ (¢) by (7)
Compute r(¢) by (15)
else[r > d]
Compute g(¢ + k), ll;(t + k) and ¢ (¢) by (18), (19) and
(20)
8: Update r(¢) and L by (21) and (22)
9:  endif
10:  Update #,(t) by (17)
11:  if |#@) — 3¢ — D|| > €| then

A A

12: t:=t+1
13:  else

14: break

15:  endif

16:  Compute () by (23)
17:  if || — 7|l = 0 then

18: for .= 1do
19: a,=0

20: B =0

21: if ¢ < 7 then
22: =1+ 1
23: else

24: break

25: end if

26: end for

27:  endif

28: end for

29: Update #,(t)

4 Separable synchronous redundant rule-based
multi-innovation predictive gradient algorithm

In this section, the time-delay the exponential autore-
gressive with exogenous input (ExpARX) model is
separated into two subsystems. Based on the obtained
subsystems, the separable synchronous redundant rule-
based multi-innovation predictive gradient (SS-RR-
MIPG) algorithm is derived.

Define the augmented parameters

010 =lor,...,00,611,-..,
Ene 15 Oz 1y« ooy QN —pe—nys M 15 -+ - s nn,,,llT e R,
020 :=[612, - Enc 2, By - - -,
Bromi2s o tny2s Bests oo Baneng—n, 1" € R*N.
Define the augmented information vector
@1a(D) ==yt = N), ..., —y(t = D), u(t = N),

cou =T e RV,
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Define
Via(p) =11, ), 1, —1,7), ...,
$1a(t —p+1, )] € RV
Eq. (2) can be written as
Y(p) = L,(001a + 7 VDT, ()02 + v(0).
(24)
Define the fictitious output Y 1 (¢) and I'(0,) as
Yi(p) =Y (@) = @1, (p)01a,
T (62) = ®1,(p)02. (25)

From (24), the ExpARX model is separated into two
subsystems

Y(p) =¥E(p), +v(),
Yi(p) = e 7 DL @0,,) + v(0).

The time-delay ExpARX model is shown in Fig. 2.
Define two criterion functions

1 A

100 = 5330+ X2 a0, 1P,
1 A

1) = 330+ 22 | Ay 17

Remark 4 Due to numerous parameters that need to
be estimated, it is possible to classify all parameters
into linear and nonlinear groups and redefine the cri-
terion function based on the classification. The sepa-
rable methods are advantageous for handling models
with both linear and nonlinear relationships by reducd-
ing parameter dimensions and algorithmic complexity.
The methods are particularly effective in lowering com-
putational complexity for Newton algorithms and least
squares algorithms.

Similarly, the gradients of J;(8,) and J>(y) are

g1(t) :== =W, (p)Y(p) — ¥, (p)bal. (26)

g2(t) := =0, W, (P)[Y (p) — ¥ (p)bal. 27)

Define the descent direction separately as
_g] (t)7 = 1,

Vi) =1 -+, —1) (28)
—g1(t — 1)], otherwise,
—82(1), r=1,

Yot) = 1 —g200) + @) [Pt — 1) (29)
—g @ — D], otherwise,

where

o) = O]

I 9 —1) =gt —1) |
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o2 Il &) |l
Y2t —1) = g2 =D |l
The associated predictive descent direction can be
determined separately as

;lz (t) =

n—1
Bit+K) =) andit—1),
11=0

n—1

Vi@ +k) = @i +k)+ Y aOF ¢ +k—1),

=1
o || g1t +k) |

& @) = ~ n s
[¥1G+k=D—gG+k—1)|
n—1
2+ =) qnét—1h),
=0

n—1

Dt +h) = =810 +h)+ Y GOt +k —b),

h=1
oy || &2t +k) |
It +k—b) = g2t +k—b) ||
The step-sizes are the same as (13)

—p18T (¢t + k)Pt + k)

Clz (t) =

ri(t) = =
Ly || ¥t +k)|?
L= o 8@ +k) —git+k—1)|
{ =max L7, = = ,
| 04(2) —0,(t — 1) || +A4
_ —pba(t + Rt + k)
ra(t) = =
Lo || 2@t + k) |12
L, — { ¥ I|§2(l+k)—§2(l+k—1)ll}
2 =max L5, — —
| 7(@®) =y —=1) || +A2
Similarly, when 0 < ¢ < d,
— 8T (1
rl(t) — M’ (30)
L ¥ (0) |17
ra(t) = —0282(t) Y2 (1) 31)

L5 | a0 12

Remark 5 ¥, and y are separated by the hierarchi-
cal principle, which not only significantly reduces
decreases the computational load associated with the
algorithm, but also improves the identification accu-
racy. By accurately capturing the respective variation
rules of #, and y, the dynamic features of the system
can be described with greater accuracy.

For the SS-RR-MIPG algorithm, the estimation of
time-delay 7 is very important. It is found that 7 is only
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Fig. 2 The hierarchical

Time-delay ExpARX model

identification structure of
the time-delay ExpARX

Y (1) = 87, (p)01a + e DB, (p)0s + v(t)

model

Sub-ID|model 1

Sub-ID|{model 2

Y (t) =2, (p)0a + v(t)

a

related to #,, but not to y. Therefore, it is unnecessary
to consider the time-delay of y.

In summary, the SS-RR-MIPG algorithm is
0a(t) = 0a(t = 1) = ri(D&1 (1 + k), (32)
n—1
Bit+k) =Y qugi(t—1), (33)
11=0

Vit +k)=—g1(t +k)
n—1

+ Y P+ k=), (34)

h=1
oLl it +k) |

o, (1) = — ~ . (33)
| ¥t +k—=0—g@+k—1) |
8T 7
) = PB4+ G6)
Ly | ¢ +k)|?
L= 181+ —gt+k—1)|
1 = max 1» = =
| 04(t) —0,(t —1) || +A1
(37)
7 = argmax J(7), (38)
7€0,..., Tmax
POy =yt —1) —r()g@ +k), (39)
n—1
2+ =) anéat —b), (40)
=0
Yot +k) = g2t + k)
n—1

+ Y 8OV +k — 1), (41)

h=1

o) o || 8a(t +K) | )
’ I Yt +k—20) — go(t+k—1) ||
ra () = —p&2(t + k)Yt + k) 3)

Ly || Ya(t + k) |2

0.
L:" Yi(t) = oV D 1 (8a0) + () |
gl
Gr(t +k)— gt +k—1
Lzzmax{Lﬁ,”ng—i_)A&(—'— )II}.
ly@ —y@—=1DI+A2

(44)

Remark 6 Using the hierarchical principle, the SS-RR-
MIPG algorithm has higher flexibility and adaptability
than the RR-MIPG algorithm. By co-processing 6, and
y simultaneously, the relationship between 6, and y
can be better coordinated to ensure that the algorithm
can maintain stable performance during runtime. At the
same time, it is possible to adjust a parameter individ-
ually according to the actual demand to satisfy specific
needs.

The proposed SS-RR-MIPG parameter estimation algo-
rithm in this article can combine other parameter iden-
tification algorithms [49-56] to present new parameter
estimation methods for various dynamic stochastic sys-
tems, and can be applied to other control and schedule
areas [57-63] such as the transportation communica-
tion systems [64—-69] and dynamical systems and so
on. The procedure of computing 9u (t) and y () by the
SS-RR-MIPG algorithm is listed in Algorithm 2.

5 The analysis of the computational efficiency

The efficiency of algorithm is determined by computa-
tional complexity, quantified by computation volume,
measured through counting floating-point operations-
multiplications and additions combined. The compu-
tational amounts of the RR-MIPG and SS-RR-MIPG

algorithms are shown in Tables 1 and 2.
From Tables 1 and 2, it has

Ny :=16nN +32pN + 72N + 8np
+2n% +4n — 4p + 20,
Ny :=16nN +24pN + 72N + 8np 4+ 3n — 4p + 26.
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Table 1 Computational amounts of the RR-MIPG algorithm

Expressions Multiplications Additions
Ba(t) =0t — 1) — r(8(t + k) 4N +1 4N + 1
AT 2

) = —P& Ry +k) 12N +5 SN
r() LIF+0 )2 +

_ g0+ —g@rk—D]|
L = Jferooerre 8N +5 16N +3
g +k) =00 g —1) 4nN +n 49N —4N +n — 1

VY +h) =8+ + X1 aOp @ +k—1)
ol k)l

4nN —4N +n —1

4nN —4N +n —1

9 = gD 8N +6 2N +1
A2 A2

) =300 10, (L) + 6, y(L)] 2n? 2 —1
8(t) = %(g” 16pN +4pn+p 16pN +4pn —5p — 1
V() =8O + O — 1) — gt — 1)) AN +1 8N +2
Total flops  N; = 16nN + 32pN + 72N + 8np +2n% 4+ 4n —4p +20
Table 2 Computational amounts of the SS-RR-MIPG algorithm
Expressions Multiplications Additions
0,() =0,t — 1) —r (D& +K) 4N 4N

_ =pEl aHod e+ _
n0 == P 12N +3 8N =2

_ 1810+ —g1 k=D
L = 3 506 -DT 8N +3 16N —1
g1 +k) =Y _hangi—1) 4nN 4nN —4N —n—1
Vit +k) =g+ + Y 6,0 4nN — 4N 4nN — 4N
xP (1 +k—1)

_ aull¥, (+h)| _

) = i =g e+l SN 4 12N =2
A2 A2

o)=Y 00, (L) + 6, y(D)] 2n? 2n—1
f1(1) = 0u) 8pN +4pn 8pN +4pn —2p
ﬁl(t)=*21(I)+§1(l)['/71(l*1)*210*1)] 4N 8N
PO =9 —1)—r(0)g(+k) 1 2

— =&tk 1
ra(t) Ll (4|12 " "

_ 20+ - +k—D)|
Ly = 5 0-ra-nI+as 7 0
@0 +k) =Y}y anga(t — ) 3 3
Yot +k) = =gt + k) + Y12 6,0 n—1 n—1
xPa(t +k — )

_ oY t+h)]
6 () = W2 (t+k—I)— g2 (t+k—D) | 4 !
gxn:% 2pN +p 8pN —3p—1
V(1) = —2(0) + 1Ot — 1) — g2t — D] 1 3

Total flops Ny = 16nN +24pN + 72N + 8np

+ 8np +3n—4p 426
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Algorithm 2 SS-RR-MIPG algorithm

Require: Set the maximum iteration f,,,,, time-delay t, predic-
tion hqrizon k=2.
Ensure: 0,(¢) and y (1)
1: fort = 1do
2:  if 0 <t < d then
Compute g; (1) and g>(¢) by (26) and (27)
Update 1/;1(t) and 1/}2(t) by (28) and (29)
Compute 1 (¢) and r»(¢) by (30) and (31)
else[r > d] .
Compute g (1 + k), ¥, (¢t + k) and g;, (1) by (33), (34)
and (35)
8: Update 1 (¢) and L tzy (36) and (37)
Compute &»(r + k), Y2 (¢t + k) and ¢, (¢) by (40), (41)
and (42)
10: Update r>(¢) and L, by (43) and (44)
11: endif
12:  Update 0,(¢) and p (¢) by (32) and (39)
13: i 10@) — 0@ — DI+ [9() — Pt — 1)|| > €| then

AN A

N

14: t:=t+1
15:  else

16: break

17: end if

18:  Compute 7(z) by (38)
19:  if | — 7| = O then

20: for .= 1do
21: a,=0

22: B =0

23: if ¢ < 7 then
24: =1+ 1
25: else

26: break
27: end if

28: end for

29:  endif

30: end for

31: Update 6,(t) and y (1)

When n, p > 1, the difference in computational
amounts between the RR-MIPG algorithm and the SS-
RR-MIPG algorithms is

Ni—N»=8pN+2n°+n—6=>0.

Obviously, Ni > N,.Compared to the RR-MIPG algo-
rithm, the SS-RR-MIPG algorithm leverages hierarchi-
cal principles to significantly enhance computational
efficiency. For example, let n = 10, N = 40, p = 40,
it yields

Ny = 6.378 x 10,

N> = 5.0776 x 10*,
Ni — N2 = 1.3004 x 10%.

With increasing the system dimension, the computa-
tional difference becomes more noticeable, highlight-
ing the superior computational efficiency of the SS-

RR-MIPG algorithm over the RR-MIPG algorithm.
For a clear visualization of the computational disparity
between the RR-MIPG and SS-RR-MIPG algorithms,
N = 200 is fixed, and the number of operations of n
and p is drawn in Fig. 3.

6 The main convergence results

Suppose that the gradient g1 (¢) is Lipschitz contin-
uous on open convex set & containing L.(0,9). The
criterion function J(0,) and the gradient vectors g; (¢)
satisfy the following assumptions:

(A1) Ley(B40) = {040 € R*™N [T ()0 < T(3)a0),
(A2) || g1(04(1)—g1@a(t—1)) || <Ley II A8 (1) || -

Lemma 1 Assume (Al) and (A2) are satisfied, then for

all t
g+, +k) <=1 —o/N) | &G +k) |
(45)
I +R) IS A+aN) &G+ .  (46)
Theorem 1 For all t, if p = I_%N, the infinite

sequence 0, generated by the separable synchronous
redundant rule-based multi-innovation predictive gra-
dient (SS-RR-MIPG) algorithm satisfies

lim || &1(z +k) [|=0.
—>00

Proof In accordance with the mean value theorem
TOu(1) = JBa(t — 1)) = 8] (0) A4 (1),
where 8, € [0,(t), 0,(r — 1)].
It can obtain that
g0,00,(1) < —ri(t) || &t + k) |
Loy (@) | 81 +K) 117
Combining (45)—-(46) and Cauchy—Schwarz inequal-
ity, it yields
J(O4(1) — (0.t — 1))
G ANG +d)’
Loy 19, +4d) |
Loy ) | Y1t + ) |17
< ZAl=a) | &1 +d) I*
Ley | ¥4t +a) |2
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Fig.3 The RR-MIPG and
SS-RR-MIPG flop numbers
versus p and n x10°

Lo o7 | gl(t+d) NEAETE
L2 |9, +d) |
iU =M 8¢ +d) |
- L 191G +d) |12
Considering p; = “%N, which is also solutions to the
quadratic equations ,012 — (I —o1N)p1, Eq. (47) will
be

(47)

—(1 - N)? || g1 +k) |*
AL 91+ 1K) |12

JOa®) — J@a(t — 1) < (48)

Thus, J(8,(t)) and J (y) are decrease sequences, and
Z —(A—aN? [ &G+ *

=1 4Lc1 ” 7/'1(f +k) ”2

Based on (45)—(46), it has

(-~
0< mz I &1 +k) |1?
4
< I &1+l

el RGO |I2

Therefore, it results in
lim || & (t+k) =0
11— 00

It is assumed that J(@,) is locally convex except for
non-smooth extremum. O

Theorem 2 Suppose J(0,) has a minima 67 € R*N.
It is also supposed that it exists 0 < N1 < Ry, such
that
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=Y
z

n
o
oo

200 200

Nll

10, — 0% 1P< T (@,(0) — T (87)

Nz
—1 16, —0% 12, (49)

Ri1 || 0, — 0, I<Il g1(0,) 1< R21 || 0 — 07 || (50)
Then, the infinite sequence {8, (t)} generated by the SS-
RR-MIPG algorithm lead 10 8,(t) — 0} ast — oo.

Proof As the level set Ty = {8, € R*N} is bounded.
Let Xy =4L,,. According to (48)—(50) and 0 < R <
N»1. It can be obtained that
—(Il—aN) [ &1 +hk) | <
ey 191G +K) |2
X[ Oa(D)) — J (O],
Define
_ R —oiN)?
T Ro(1 +01N)?
Therefore, it has

N
i 10, — 3% 1< J(0a(t)) — J(6F)

<L =QDJOa) — T (O]

Ri1(1 — o1 N)?
Ro1(1 + o1 N)?

€ (0, 1).

<
< =QJ@O. (1) = J (O]
It means that 6,(t) — 67. O

Theorem 3 Suppose the identification strategy described
by (32) and (39) are applied to the system described by
(24). Let wy = [x,()1* +v1, 0 < vi < oo. If the
optimization step-size meets 0 < ri(t) < w%’ the SS-
RR-MIPG sub-algorithm of 0, is stable.
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Proof Consider

X1 = x1¢ =D+ x]O17A0,(1). (51)
Similarly, it has
Ab, (1) = —ri () x ()X, (). (52)

Substituting (51) into (52) yields

X1 =xie—D+rio I xi® 1* x7@)

=2r1(0) | Xy @) I* X7t — DX
X1 —Dx () = x70) +ri@) | xXF©O 1 x3@). (54)

Define the Lyapunov'’s function as
i) = 30 + 230 %, 112 +%> | A8, (1) 1A(55)
In accordance with (51)—(52)
Ti() =Y —1)
=x3c—D+ri@® I xi0 I* x70
—2r (O xFO X3 — Dx3)
+2r7 @) | x5 I1* X3
+oirf () I X7 @) |
—x3 =1 =2 X =D P A8z — 1) |
<) | X @) 117 [=2x,(t — Dx (0
3 @)X | xh@ I
o (O X O]

Suppose

0 <ri() <2x,(t—Dx,OBXTO I X7 17
+u i) (56)

Substituting (54) into (56)results in

0<r@) < (57

I xZ I +vr

In the case, Y1(t) — Ti(t — 1) < 0.
Thus, the stability of the SS-RR-MIPG sub-algorithm

of 0, is proved. O

Theorem 4 Assume (x7)*> = min{x3(t)} = 0. If the
optimizing step-size satisfies 0 < ri(t) < wil and the
SS-RR-MIPG sub-algorithm of 0, is stable, the time-
delay exponential autoregressive with exogenous input
(ExpARX) model is also asymptotically stable, which
leads to

lim x,(t) — 0.
11— 00

Proof 1If ri(¢) satisfies 0 < ri(t) < w%, Yi(¢) is
decreasing sequence. Obviously,

X1 =X =1 —=r@ | ;@ 17 x,10),

where ¥ (1) = x,(t) — X}
Thus, it has

Bo = e -0 -2[1-puo1 x| no

Iy @) 17 x3@)
+ri@ | X1 I1* xT@). (58)

It means
1) < Xt —1). (59)

According to (58)—(59), {x % (t)}1is decreasing sequence.
Thus, it exists nonnegative scalars () T)z that satisfy

lim 370 — (xD*
Then, based on (57) and the definition of 7 (7), it yields
X1 = DX O =14+r0) | X)) 17

(= xiba o'y
Thus,
1O =D ={1+rn® 1 xi@ I
[1- XT[Xl(t)]_l]_l}_z-

Define
12
ni(0) = {1 +r@ X 1? [1 - x’f[xl(t)]‘l] }

Let u} = max{u1 (1)}, whichresultsin 0 < puf < 1.1t
can be obtained that

0< X7 < X < - < pixi ).
X1(0) is bounded number and

lim (u})' — 0.
11— 00
From the above equations, it has

lim f(%(t) — 0.
t—00
Note that (x})> — 0 means ¥} — 0. Therefore, it
leads to

. .
,l_lfgo)(l(t) — x] =0.

O

@ Springer



Y. Gu et al.

Table 3 The parameter estimation and errors of the RR-MIPG and SS-RR-MIPG algorithms (62 =0.10%)

Algorithm  p o &1 &2 &a &2 o B mi  ma2 M1 m2 B Y 8(%)
1 0.000 0.269 0.341 0.271 0.263 0.000 0.000 0.529 0.493 0.408 0.418 0.000 0.206 86.133
RR-MIPG 5 0.000 0.351 0416 0.275 0.211 0.000 0.000 0.644 0.584 0.342 0.405 0.000 0.555 74.814
10 0.000 0.444 0.509 0.275 0.089 0.000 0.000 0.787 0.726 0.212 0.347 0.000 2.942 3.021
1 0.000 0.391 0458 0.246 0.166 0.000 0.000 0.762 0.647 0.187 0.418 0.000 0.825 66.067
SS-RR-MIPG 5 0.000 0.410 0.468 0.259 0.160 0.000 0.000 0.773 0.685 0.209 0.405 0.000 1.277 52.336
10 0.000 0.454 0.490 0.242 0.157 0.000 0.000 0.803 0.746 0.178 0.334 0.000 2.987 0.695
True values 0.000 0.450 0.500 0.250 0.150 0.000 0.000 0.800 0.750 0.170 0.330 0.000 3.000

Fig. 4 The estimation

errors versus ¢ of RR-MIPG

under different p

Fig. 5 The estimation
errors versus ¢ of
SS-RR-MIPG under
different p
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Fig. 6 The estimation
errors versus ¢ of RR-MIPG
and SS-RR-MIPG

1.5

——k—— RR-MIPG
L —O—— SS-RR-MIPG |

T

0 500 1000 1500 2000 2500 3000
t
]
——— RR-MIPG
—O—— SS-RR-MIPG | |
2500 3000
1 T T T T
5k p= ——— SS-RR-MIPG
09\8—@—“ S 4
0 500 1000 1500 2000 2500 3000
t
Fig. 7 The parameter
estimation of 6, by 0.45 @ 0.492 T % 0.27 é
RR-MIPG and 0.44 0.49 0.96
SS-RR-MIPG 0.43 0.488 g '
0.42
0.41 0.486 1L o2 é
RR-MIPG SS-RR-MIPG RR-MIPG SS-RR-MIPG RR-MIPG SS-RR-MIPG
51.1 =0.45 51,2 =0.5 §2,1 =0.25
0.2 T
$ 08 = 0.74 ==
0.15 0.78 0.73
0.76 0.72
01l I o74p B3 o7t} EJ
RR-MIPG SS-RR-MIPG RR-MIPG SS-RR-MIPG RR-MIPG SS-RR-MIPG
&, =015 ma=038 Mo = 0.75
N 036} | 3
0.22 % o
- 0.35 2.9
0.34 28
0.18 ’ 1
RR-MIPG SS-RR-MIPG RR-MIPG SS-RR-MIPG RR-MIPG SS-RR-MIPG
M1 = 0.17 M2 = 0.33 y=3

Remark 7 The convergence of the proposed algorithm
is demonstrated by showing the gradient and the output
error approach zeroast — o0. The global convergence
of the proposed algorithm is proven by establishing the
existence of 0,(¢) that minimizes the criterion func-
tion. The stability of the proposed system is proven by
determining the minimum of the Lyapunov function
composed of the output error.

The convergence of the SS-RR-MIPG sub-algorithm
of 0, is proved. Similarly, the SS-RR-MIPG sub-
algorithm of y is convergent.

7 Numerical results

This section employs numerical simulations and a
real-life example of piezoelectric ceramics to val-
idate the effectiveness of the redundant rule-based
multi-innovation predictive gradient (RR-MIPG) and
separable synchronous redundant rule-based multi-
innovation predictive gradient (SS-RR-MIPG) algo-
rithms.
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Fig. 8 The parameter 1 T T T T
estimation by SS-RR-MIPG &11=045
€12=05
versus ¢ {;f =025
§22=0.15
0 1 1 1 1
0 500 1000 1500 2000 2500 3000
3 T T T T
1= 0.8
2 = 0.75
2 Mo =017 | 7]
722 = 0.33
y=3
1 - -
0 1 [l 1 1
0 500 1000 1500 2000 2500 3000
Fig. 9 The true outputs and T T T T T
the estimated outputs versus 4r B true value 7
t 3l ® . *  8S-RR-MIPG| |
T O RR-MIPG
2r @
® . ® B o ® ® N
1re o® T ®d @ ® B
4 £ || % > #
0 '. B\ L | B R @ % ||
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“Ar ® L R B
Q ® | ® |
2r ’ i F g )
3k -
1 1 1 1 1
0 500 1000 1500 2000 2500 3000

7.1 Numerical simulation

Consider the exponential autoregressive with exoge-
nous input (ExpARX) model with ordern =2, t = 1,
and k = 2,

P =[E11,&12, 821,622, 11,1, 11,2, 12,15 12,2, V1T
= [0.45,0.5,0.25,0.15,0.8, 0.75,0.17, 0.33, 3.00]T,

The augmented parameter is

Vo = lo1, 611,812,821, 82,2, 02, Br, M1, M2, M2.15
m.2. B v1"
= [0,0.45,0.5,0.25,0.15,0, 0, 0.8, 0.75,
0.17,0.33,0, 3.00]".

@ Springer

The parameter estimation and errors at time t = L =
3000 are shown in Table 3 and Figs.4, 5 and 6, where
8(t) = ||1§a (t) — ¥4l x 100% is the parameter esti-
mation error. Figures7 and 8 show the estimation of
parameters by the separable synchronous redundant
rule-based multi-innovation predictive gradient (SS-
RR-MIPG) and redundant rule-based multi-innovation
predictive gradient (RR-MIPG) algorithms. The actual
outputs y(f) is shown in Figs.9 and 10. Table 4 and
Fig. 11 and 12 illustrate the parameter estimation under
the different o2. The mean values and estimation devi-
ations of the SS-RR-MIPG algorithm are illustrated in
Tables 5 and 6 and Figs. 13 and 14. The result com-
parison between the SS-RR-MIPG algorithm and the
traditional H-MIGI algorithm is shown in Fig. 15.
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Fig. 10 The errors of the RR-MIPG SS-RR-MIPG
outputs 4 T T T 4 T T T
—O v —O ¥
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Table 4 The parameter estimation and errors of the RR-MIPG algorithm (p = 10)
Algorithm o &1 &2 B &2 @ Bi mi o m2 ma ma2 P 14 3(%)
0.60> 0.000 0.440 0.499 0254 0.084 0.000 0.000 0.782 0.720 0.214 0.350 0.000 2.712 9.104
RR-MIPG 0.40% 0.000 0441 0502 0.252 0.086 0.000 0.000 0.784 0.721 0.213 0.349 0.000 2.778 7.298
0.20> 0.000 0442 0.506 0.251 0.087 0.000 0.000 0.786 0.723 0.212 0.348 0.000 2.845 4.879
0.10> 0.000 0444 0.509 0.250 0.089 0.000 0.000 0.787 0.726 0.212 0.347 0.000 2.942 3.021
0.60> 0.000 0.458 0.494 0.245 0.150 0.000 0.000 0.741 0.720 0.168 0.338 0.000 3.258 7.833
SS-RR-MIPG 0.40°> 0.000 0.457 0.492 0.244 0.153 0.000 0.000 0.742 0.721 0.173 0.341 0.000 3.112 3.617
0.20 0.000 0456 0.491 0243 0.155 0.000 0.000 0.744 0.723 0.174 0.343 0.000 3.077 2.380
0.10> 0.000 0.454 0.490 0.242 0.157 0.000 0.000 0.803 0.746 0.178 0.334 0.000 2.987 0.695
True values 0.000 0.450 0.500 0.250 0.150 0.000 0.000 0.800 0.750 0.170 0.330 0.000 3.000
Fig. 11 The estimation RR-MIPG SS-RR-MIPG
errors of RR-MIPG and ' ' ' - ' ' ' '
SS-RR-MIPG 01+ % . 01+ ]
T
I
0.081 é 0.08F ! 1
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w w
=
1
0.04r 0.04f 1
= é
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Fig. 12 The Monte Carlo 0.25
estimation errors ¢ and Run
Times (p = 10 0.2
(p ) 0.2
G 0.18
0.1
0.16
0
200
0.14
Run times t 0.12
0.25 200 0.1
0.2 4 0.08
150
3
0.15 g 0.06
< += 100
0.1 é ook
0.05 50
0.02
0 0
0 100 200
Run times

Table 5 Mean values and deviations of parameter & (62 =0.10%)

Run &1 &2 &1 &2

10 0.4424 4+ 0.0234 0.4905 4+ 0.0849 0.2538 +0.0178 0.1692 4+ 0.0928
20 0.4456 4+ 0.0266 0.4924 4+ 0.0837 0.2532 +0.0175 0.1668 +0.0912
30 0.4469 4+ 0.0279 0.4949 4+ 0.0238 0.2517 &+ 0.0153 0.1615 4+ 0.0896
40 0.4477 + 0.0287 0.4963 £+ 0.0252 0.2511 £ 0.0175 0.1599 £+ 0.0844
50 0.4475 4+ 0.0285 0.4960 + 0.0249 0.2504 +0.0148 0.1583 4+ 0.0483
True values 0.4500 0.500 0.250 0.150

Based on the simulation results, it can be drawn.

e As t and p increase, the errors of the RR-MIPG
and SS-RR-MIPG algorithms decrease, and the SS-
RR-MIPG algorithm is more accurate than the RR-
MIPG algorithm—see Table 3 and Figs.4, 5 and
6.

The parameter identification results of the SS-RR-
MIPG algorithm are closer to the true values com-
pared to the RR-MIPG algorithm—see Figs.7 and
8.

The predicted outputs by proposed algorithms
closely match the actual outputs, and the SS-RR-
MIPG algorithm has a smaller prediction error

@ Springer

compared to the RR-MIPG algorithm—see Figs.9
and 10.

As noise variance decreases, the errors decrease for
both RR-MIPG and SS-RR-MIPG algorithms, and
the SS-RR-MIPG algorithm exhibits superior esti-
mation accuracy under equivalent o>—see Table 4
and Fig. 11.

The Monte Carlo results indicate that the SS-RR-
MIPG algorithm is effective for identifying the
ExpARX model—see Tables 5 and 6 and Figs. 12
and 14.

The SS-RR-MIPG algorithm has smaller identifica-
tion error and faster convergence speed compared
to the H-MIGI algorithm—see Fig. 15.
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Table 6 Mean values and deviations of parameters n and y (6% =0.10%)

Run n,1 01,2 n2,1 n2,2 14
10 0.8044 +0.0233 0.7583 + 0.0545 0.1981 £ 0.1277 0.3341 £ 0.0347 3.0021 +0.1242
20 0.7996 + 0.0415 0.7571 + 0.0540 0.1833 £ 0.1260 0.3315 +0.0321 2.9955 +0.2036
30 0.7986 + 0.0405 0.7558 + 0.0537 0.1799 £ 0.1244 0.3284 £ 0.0378 3.0132 +£0.2198
40 0.7998 £ 0.0417 0.7555 £ 0.0523 0.1783 £0.1209 0.3289 + 0.0368 3.0066 £+ 0.1655
50 0.8002 + 0.0420 0.7550 £ 0.0489 0.1766 £ 0.1161 0.3290 £ 0.0386 3.0025 +0.1614
True values 0.8000 0.7500 0.1700 0.3300 3.0000
Fig. 13 The Monte Carlo ~ ' ' ' ' ' ' ' ' '
estimation mean values of 7 0.45 | | | > | % | | 4
parameter & 5 10 15 20 25 30 35 40 45 50

Fig. 14 The Monte Carlo
estimation mean values of
parameters 1 and y
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Fig. 15 The estimation
errors versus ¢ of
SS-RR-MIPG and H-MIGI 0.8

Fig. 16 The schematic
diagram of the modular
digital multi-channel piezo
controller structure

(7 [ IH-MGI

I SS-RR-MIPG

modular digital multi-channel

piezo controller

7.2 Application to a piezoelectric ceramic system

The piezoelectric ceramic flow control system utilizes
a piezoelectric ceramic actuator as its core to achieve
precise gas flow control. Piezoelectric ceramics possess
unique physical properties, generating voltage when
subjected to external forces, while also deforming when
voltage is applied. The characteristic allows the piezo-
electric ceramic actuator to respond to minute electri-

@ Springer
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cal signal changes, enabling precise adjustments to the
gas flow. By monitoring the flow rate and adjusting the
voltage applied to the piezoelectric ceramic, the system
ensures stable, high-precision control of gas flow. The
piezoelectric ceramic flow control system features fast
response and high control accuracy, making it suitable
for various applications requiring precise flow control
[70].
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Table 7 The functional list of the modular digital multi-channel piezo controller structure

Function The modular digital multi-channel
piezo controller

Axes 3
Processor PC-based
Sampling rate, sensor 20KHz
Sensor channels 3
Sensor bandwidth 5.6Khz
Sensor resolution 18bit
Output voltage —-30-135V
Amplifier channels 4
Peak output power per channel 25w
Resolution DAC 24bit

Fig. 17 Response under 25 T T T T T

sine wave excitation
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Fig. 19 The predicted

RR-MIPG

results by RR-MIPG and Sy ' '
SS-RR-MIPG under
different innovation lengths
(02 =0.10%)

50 100 150

Fig. 20 The predicted

250 300 350 400 450 500 550 600

RR-MIPG

SS-RR-MIPG

results by RR-MIPG and I — ' ' K — '
SS-RR-MIPG under actual output actual output
different noise variances O  o*=0.00? O ¢2=0.00?
(p=10) 2.5t + =010 || 25l +  0?=0.10"
77777 o? = 0.302 02 = 0302

0.5

The modular digital multi-channel piezo controller
structure is depicted in Fig. 16, with its functional list
provided in Table 7. When the input signal is sinusoidal,
the response of the piezoelectric ceramics is illustrated
in Fig. 17. The predicted piezoelectric results using the
redundant rule-based multi-innovation predictive gra-
dient (RR-MIPG) and separable synchronous redun-
dant rule-based multi-innovation predictive gradient
(SS-RR-MIPG) algorithms are shown in Figs. 18, 19
and 20.

Based on the simulation results, the following con-
clusions are derived.
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e Both the RR-MIPG and SS-RR-MIPG algorithms
demonstrate predictive capabilities for the output
of the piezoelectric ceramic flow control system.
Upon further comparison, the SS-RR-MIPG algo-
rithm demonstrates superior prediction accuracy
over the RR-MIPG algorithm—see Fig. 18.

e The predictive capabilities given by the RR-MIPG
and SS-RR-MIPG algorithms improve with ¢ and
p increasing—see Fig. 19.

e The RR-MIPG and SS-RR-MIPG algorithms have
better predictive capabilities when the noise vari-
ance is smaller—see Fig. 20.
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8 Conclusions

This paper focuses on the estimation problem of
the nonlinear time-delay the exponential autoregres-
sive with exogenous input (ExpARX) model and
proposes the redundant rule-based multi-innovation
predictive gradient (RR-MIPG) and separable syn-
chronous redundant rule-based multi-innovation pre-
dictive gradient (SS-RR-MIPG) algorithms, which
effectively overcome the shortcoming of traditional
gradient algorithms easily falling into the local optima.
Besides, the convergence analysis of the SS-RR-MIPG
algorithm is presented. The computational efficiency
of the RR-MIPG and SS-RR-MIPG algorithms is ana-
lyzed in detail. The results indicate that the SS-RR-
MIPG algorithm is more computationally efficient than
the RR-MIPG algorithm, and advantages gradually
enhance with the increase of the vector dimension.
Finally, simulation examples confirm the effectiveness
of the RR-MIPG and the SS-RR-MIPG algorithms,
revealing that the SS-RR-MIPG algorithm offers higher
accuracy compared to the RR-MIPG algorithm. The
RR-MIPG and SS-RR-MIPG algorithms can be inte-
grated and applied with other identification theories in
industries such as communication systems, dispensing
systems, and intelligent power systems. However, con-
sidering the possible issue of data loss in practical appli-
cations, future research will delve into the estimation
of nonlinear systems with missing data.
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