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A B S T R A C T   

The true cluster number of the dataset in practical applications is rarely known in advance. Therefore, it is 
necessary to use a cluster validity index to evaluate the clustering results and determine the optimal cluster 
number. However, the performance of existing cluster validity indices is vulnerable to various factors such as 
cluster shape and density. To solve the above issues, this paper proposes a new cluster validity index based on 
augmented non-shared nearest neighbors (ANCV). The ANCV index is based on the following principles: (1) 
Within-cluster compactness can be measured by the distance between the pairs of data points with fewer shared 
nearest neighbors. (2) The distances between the pairs of data points at the intersection of clusters can be used to 
estimate the between-cluster separation. On this basis, the above point pairs are further extended to their 
augmented non-shared nearest neighbors, thereby forming small clusters. Then, the average distance within and 
between these clusters is calculated respectively to estimate the within-cluster compactness and between-cluster 
separation. Finally, the optimal number of clusters is determined by the difference between the between-cluster 
separation and the within-cluster compactness. Experimental results on both 12 two-dimensional synthetic 
datasets and 10 real datasets from UCI have shown that the ANCV index performs the best among all compared 
indices.   

1. Introduction 

In cluster analysis, objects are grouped into clusters so that those in 
the same cluster are more similar and those in different clusters are less 
similar. Cluster analysis has been widely applied in recent years to fields 
such as artificial intelligence, biomedicine, machine learning, and ge
netics. Many algorithms for clustering are based on finding the cluster 
centers, such as the K-means algorithm (Yang, Ma, Zhang, Li, & Zhang, 
2017) and the density peak clustering (DPC) algorithm (Rodriguez & 
Laio, 2014). One of the main disadvantages of the K-means algorithm is 
that it cannot identify non-spherical datasets. Kernel k-means (X. Liu, 
2022; X. Liu, et al., 2019) is an extension of standard K-means clustering 
that identifies non-spherical clusters by expressing the distance in the 
form of a kernel function. Clustering algorithms such as hierarchical 
clustering divide and merge clusters based on between-cluster distance 
(Pfeifer & Schimek, 2021). Other clustering algorithms, such as DBSCAN 
(Hahsler, Piekenbrock, & Doran, 2019), utilize the distribution of den
sities within and between clusters. 

In addition, some algorithms represent data points as minimum 

spanning tree or nearest neighbor graph. The multi-stage hierarchical 
clustering algorithm (CTCEHC) uses the centroid of the minimum 
spanning tree to determine the cluster center (Ma, Lin, Wang, Huang, & 
He, 2021). The neighborhood-based three-stage hierarchical clustering 
algorithm (NTHC) performs clustering by shared nearest neighbors and 
1-nearest neighbor (Wang, Ma, & Huang, 2021). Furthermore, a split- 
merge clustering algorithm based on the k-nearest neighbor graph 
(SMKNN) is proposed, where the KNN graph guides the clustering pro
cess (Wang, Ma, Huang, Wang, & Acharjya, 2023). The DDC algorithm 
uses densities decreased chains to cluster data of any shape and density 
(Li & Cai, 2022). While these algorithms are effective for non-spherical 
clusters, they all require the input of a cluster number, since the true 
cluster number is frequently unknown at the time of clustering. There
fore, the cluster validity indices (CVIs) are used to evaluate the clus
tering results for different cluster numbers and determine the optimal 
cluster number. 

There are two types of CVIs: internal index and external index. The 
external index compares the clustering results with the true labels. There 
are three main categories of external validity indices: pair-counting, set- 
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matching, and information theory (van der Hoef & Warrens, 2019). The 
pair-counting measures count the number of point pairs that differ or 
agree between two clustering results. The Rand index (Rand, 1971) and 
the adjusted Rand index (ARI) (Hubert & Arabie, 1985) are two 
commonly used pair-counting measures. As opposed to comparing pairs 
of points, set-matching measures compare pairs of clusters. Examples of 
set-matching measures are F1-measure (F1) (de Souto, et al., 2012), 
Purity (Rendón, Abundez, Arizmendi, & Quiroz, 2011), and Centroid 

Ratio (CR) (Zhao & Fränti, 2013). Information-theoretic measures are 
used to determine how much information is shared between two parti
tions. In recent years, information-theoretic indices have become 
increasingly popular since they are based on strong mathematical 
foundations (Lei, et al., 2016; Shannon, 1948). The Entropy index 
measures the purity of the cluster class labels (Rendón, et al., 2011). In 
addition, information-theoretic indices include variations in informa
tion and different normalizations of mutual information (MI) (Meilă, 
2007; Pfitzner, Leibbrandt, & Powers, 2009). 

Unlike the external index, the internal index evaluates clustering 
results directly. Since the true labels of data points are often difficult to 
obtain, internal indices are better suited for verifying the validity of the 
clustering results. Common internal indices are the Davies-Bouldin 
index (DB) (Singh, Mittal, Malhotra, & Srivastava, 2020), Silhouette 
index (SIL) (Rousseeuw, 1987), COP (Gurrutxaga, et al., 2010), Calinski- 
Harabasz (CH) (Cengizler & Kerem-Un, 2017), and Dunn-index (Dunn, 
1974), etc. These indices, however, are only applicable to spherical 
clusters. For example, the DB index uses the average value of the data 
points within a cluster as the center of the cluster. If the cluster center is 
chosen incorrectly, the optimal cluster number can be incorrect for 
arbitrarily shaped clusters. 

Furthermore, some internal indices involve membership in fuzzy c- 
means clustering algorithm, such as PCAES (Wu & Yang, 2005) and IMI 
(Yun Liu, Jiang, Hou, & Liu, 2021). Compared to other indices, the 
PCAES index is less affected by noise, but more affected by the initial 
cluster centers. For unbalanced datasets, the IMI index performs well. As 
these indices are dependent on cluster centers, they will produce inac
curate results if the cluster center is incorrect. The SV and OS indices 
(Žalik & Žalik, 2011) solve this problem by calculating compactness and 
overlap measures based on a few data points in the cluster. However, the 
OS index performs significantly worse when there is an overlap between 
clusters. Aside from Euclidean distances, there are also indices based on 
point symmetry distances, such as the Sym index (Bandyopadhyay & 
Saha, 2008). The Sym index, however, is only applicable to datasets that 
are internally symmetric. 

Several internal indices for arbitrarily shaped clusters have been 

Fig. 1. A schematic diagram of the proposed algorithm.  
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Fig. 2. Within-cluster and between-cluster augmented non-shared nearest 
neighbor pairs. 
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proposed in recent years. The STR index (Starczewski, 2017) uses knee 
point detection based on the DB index. The CVNN index (Yanchi Liu, 
et al., 2013) combines the idea of k-nearest neighbors to measure the 
between-cluster distance based on the nearest neighbor distribution of 
the data points. The BWC index (Zhou, Liu, & Song, 2021) and the LCCV 
index (Cheng, Zhu, Huang, Wu, & Yang, 2018) both suggest improve
ments to the SIL index. The former measures distances within and be
tween clusters using the average distance between the center and the 

points within a cluster and the shortest distance between the centers of 
different clusters. The latter uses the concept of natural nearest neigh
bors to calculate the density kernels. And the between-cluster distance is 
determined by the geodesic distances between density kernels. The DCVI 
index (Xie, Xiong, Dai, Wang, & Zhang, 2020) constructs a minimum 
spanning tree for the density kernel and uses the minimum spanning tree 
to compute within-cluster and between-cluster distances. In addition, 
the SSDD index (Liang, Han, & Yang, 2020) evaluates the clustering 

(a) K=3, within-cluster ANSNN pairs (b) K=3, between-cluster ANSNN pairs

(c) K=4, within-cluster ANSNN pairs         (d) K=4, between-cluster ANSNN pairs

(e) K=5, within-cluster ANSNN pairs         (f) K=5, between-cluster ANSNN pairs

Fig. 3. Clustering results of the Smile Face dataset using the NTHC algorithm with blue triangles indicating the within-cluster and between-cluster augmented non- 
shared nearest neighbor pairs. 
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results based on the variation in density between density kernels. These 
indices are effective for arbitrarily shaped clusters, however, they are 
less effective if the dataset contains clusters of varying densities. 

In this paper, the proposed CVI is guided by the following principles: 
(1) The within-cluster compactness is related to the distance between 
the data point pairs with fewer shared nearest neighbors within a clus
ter. (2) The between-cluster separation can be measured by the distances 
between the non-shared nearest neighbor pairs located at the intersec
tion of adjacent clusters. Accordingly, this paper proposes a new cluster 
validity index based on augmented non-shared nearest neighbors 
(ANCV). We first construct a minimum spanning tree according to the 

distance between points in the dataset. Secondly, we determine the 
within-cluster compactness and between-cluster separation by the dis
tances between pairs of augmented non-shared nearest neighbors 
located within and between clusters, respectively. Lastly, the optimal 
number of clusters is determined by evaluating the difference between 
the between-cluster separation and the within-cluster compactness. 
Experimental results on both synthetic and real datasets have shown 
that the proposed index performs the best among all compared indices. 

In this study, we aim to develop a cluster validity index whose per
formance is less affected by the density and shape of the clusters. Fig. 1 
shows a schematic diagram of the proposed algorithm. We now briefly 
analyze the proposed algorithm in two aspects. (1) The within-cluster 
compactness is determined by the average distance between pairs of 
within-cluster augmented non-shared nearest neighbors, which are 
derived from point pairs with fewer shared nearest neighbors. In addi
tion, point pairs with fewer shared nearest neighbors are determined by 
the distribution of local data points within a cluster rather than the 
shape and density of the entire cluster. (2) The between-cluster sepa
ration is determined by the average distance between pairs of between- 
cluster augmented non-shared nearest neighbors. These point pairs are 
derived based on the distribution of local data points between clusters 
regardless of the shape or density of the entire cluster. In conclusion, the 
proposed cluster validity index is effective for clusters of varying shapes 
and densities in the dataset. 

The remainder of this paper is organized as follows. Section 2 pro
vides a brief overview of existing CVIs and their shortcomings. Section 3 
describes the proposed index in this paper. Experimental results on 
synthetic and real datasets are given in Section 4. Section 5 discusses 
several factors that affect ANCV performance. In section 6, we present 
our conclusions and discuss future research directions. 

2. Related work 

In recent years, researchers have proposed a variety of different CVIs. 

Fig. 4. The clustering evaluation results of the Smile Face dataset using the 
ANCV index, where K varies from 2 to 26 and the red, blue, and green lines 
represent the within-cluster compactness, between-cluster separation, and the 
ANCV index results, respectively. 
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DS9                DS10                DS11               DS12

Fig. 5. 12 two-dimensional synthetic datasets.  
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Traditionally, the clustering results are evaluated by using a single data 
point as a representative for the cluster. For example, the DB index uses 
the cluster center as a representative of the cluster. The minimum value 
of the DB index indicates the minimum within-cluster distance and the 
maximum between-cluster distance, which reflects the most reasonable 
partitioning of the dataset. The DB index is defined as follows: 

DB(K) =
1
K
∑K

i=1
max

i∕=j

[
avg(Ci) + avg

(
Cj
)

d
(
vi, vj

)

]

(1)  

where K denotes the number of clusters, vi and vj are the average of all 
the data points in clusters Ci and Cj, respectively, and avg(Ci) and avg(Cj)

denote the within-cluster distances of clusters Ci and Cj, respectively. 

avg(Ci) =
1
|Ci|

∑

xi∈Ci

d(xi, vi) (2)  

where |Ci| denotes the number of data points in cluster Ci. 
Similar to the DB index, the CH index takes the cluster centers and 

the center of the dataset as representative points, and measures the 
within-cluster and between-cluster distances by the squared sum of the 
distances from each point within a cluster to the cluster center and the 
squared sum of the distances between each cluster center and the center 
of the dataset, respectively. According to the Dunn index, the within- 
cluster and between-cluster distances are measured using the distance 
between the furthest and closest point pairs within a cluster and between 
clusters, respectively. In addition, the PBM index (Pakhira, Bandyo
padhyay, & Maulik, 2004) introduces the membership degree based on 
the DB index for fuzzy clustering. The above method of describing 
clusters based on cluster centers is only appropriate for spherical clusters 
and is less effective for arbitrarily shaped clusters. 

To adapt the indices to a variety of cluster shapes, the researchers 
selected multiple points from the cluster to serve as representative 
points. The data points that have at least one neighbor in the k-nearest 

neighbors belonging to different clusters are considered as representa
tive points for the CVNN algorithm. And the size of the between-cluster 
distance depends on the weights of these representative points. The 
details are as follows: 

Sep(NC, k) = max
i=1,2,...,NC

(
1
ni

∑ni

j=1

qj

k

)

(3)  

where ni is the number of data points in cluster Ci, k is the number of 
nearest neighbors, and qj is the number of nearest neighbors in the k- 
nearest neighbors of the jth point in cluster Ci that are in different 
clusters. 

The CVNN index defines within-cluster distance as the average dis
tance between all point pairs within a cluster. 

Com(NC) =
∑NC

i=1

[
2

ni(ni − 1)
∑

x,y∈Ci

d(x, y)

]

(4) 

The CVNN index value is the sum of the normalized within-cluster 
and between-cluster distances: 

CVNN(NC, k) = SepNORM(NC, k) +ComNORM(NC) (5) 

When there is no overlap between clusters, the number of repre
sentative points is small, so the value of Sep is smaller. In contrast, the 
value of Sep is higher when there is an overlap between clusters. When 
the CVNN index value reaches a minimum, it indicates that the dataset 
has been reasonably partitioned. Similar to CVNN, the SSDD index and 
RTI index (Rojas-Thomas, Santos, & Mora, 2017) also use multiple 
points in a cluster as representative points. In the SSDD index, the data 
points with greater densities are regarded as representative points. The 
minimum spanning tree containing representative points is used as the 
backbone of the cluster, and the clustering results are evaluated based 
on the variation of the densities of the data points on the backbone. 
According to the RTI index, each sub-cluster center is considered as a 
representative and the within-cluster and between-cluster distances are 
determined by the weight of the edges on the minimum spanning tree 
comprised of the representative points. Unlike the above indices, the 
LCCV and DCVI indices assign different size neighborhoods to each data 
point based on the idea of natural nearest neighbors and use denser 
points within the neighborhood as representative points. The LCCV 
index uses the geodesic distance between the representative points and 
evaluates the clustering results based on the SIL index. The DCVI index 
constructs a minimum spanning tree based on representative points and 
uses the ratio of the longest edge within a cluster and the shortest edge 
between clusters as the outcome. In general, the above indices can 
identify well-separated clusters of arbitrary shape, however, they do not 
take into account the boundary of the clusters and their performance is 
limited by the choice of representative points. 

Table 1 
The description of 12 two-dimensional synthetic datasets.  

Dataset Data size Cluster number Spherical cluster Ring-shaped cluster Arc-shaped cluster Linear cluster 

DS1 600(200,200,200) 3 3    
DS2 1268(466,382,213,207) 4    4 
DS3 1741(623,691,106, 

103,113,105) 
6 4   2 

DS4 1015(407,187,224,197) 4 3 1   
DS5 4811(2520,2291) 2   2  
DS6 630(410,58,100,62) 4   4  
DS7 863(421,86,294,62) 4 4    
DS8 644(201,181,161,101) 4 1  3  
DS9 999(333,333,333) 3 2 1   
DS10 1000(500,500) 2  2   
DS11 400(200,100,100) 3 1   2 
DS12 240(87,153) 2 1  1   

Table 2 
The description of 10 real datasets.  

Datasets Abbreviations Data 
size 

Dimensionality Number of 
clusters 

Contraceptive R1 1473 9 3 
Connectionist R2 208 61 2 
German R3 1000 24 2 
Glass R4 214 9 6 
Leuk R5 72 40 3 
Pittsburg-bridges- 

REL-L 
R6 103 7 3 

Sonar R7 208 60 2 
Wifilocalization R8 2000 7 4 
Wilt R9 4839 5 2 
Zoo R10 101 16 7  
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3. Methodology 

In this section, we describe and explain the definition, rationale, 
complexity, and parameters related to the ANCV index. 

3.1. Definition 

Given a dataset XN×D = {x1, x2,⋯, xN} containing N data points of 
dimension D. Suppose that the clustering algorithm partitions the 
dataset X into K clusters, denoted as C = {c1,c2,⋯,cK}. And we further 
assume that GX = (V,EX) is the complete graph of the dataset X,TX =

(V,ETX ) is the minimum spanning tree constructed on GX, where V is the 
set of vertices consisting of N data points, and ETX denotes the set of all 
edges on the minimum spanning tree. And the edges on TX associated 
with data points xi and xj are weighted by d(xi, xj) which is the Euclidean 
distance between data points xi and xj. 

Definition 1. (shared nearest neighbors) 

Let Nk(i) and Nk(j) be respectively the sets of k-nearest neighbors 
(kNN) of data points xi and xj in the dataset X. The set of shared nearest 
neighbors (SNN) of data points xi and xj is defined by 

NS(i, j) = Nk(i) ∩ Nk(j) (6)  

Definition 2. (non-shared nearest neighbors) 

Let NS(i, j) be the SNN set of data points xi and xj in the dataset X and 
Nk(i) be the kNN set of data point xi. The set of non-shared nearest 
neighbors (NSNN) of xi with respect to xj is defined by 

NS(i)j = NK(i) − NS(i, j) (7) 

According to Definition 2, the SNN of xi and xj are removed from the 
kNN set of data point xi and the remaining points are called the non- 
shared nearest neighbors of xi with respect to xj. Similarly, the NSNN 
set of xj with respect to xi is defined by 

NS(j)i = NK(j) − NS(i, j) (8)  

Definition 3. (augmented non-shared nearest neighbors) 

Let NS(i)j be the NSNN set of xi with respect to xj. The set of 
augmented non-shared nearest neighbors (ANSNN) of xi with respect to 
xj is defined by 

ÑS(i)j = NS(i)j ∪ {xi} −
{

xj
}

(9) 

For the data points xi and xj in the dataset X, there must exist xi,xj ∕∈

NS(i, j). Suppose xj ∈ Nk(i), then xj ∈ NS(i)j. According to Definition 3, xj 

is removed from NS(i)j such that xj ∕∈ ÑS(i)j. 

Table 3 
The description of 13 indices.  

Name Optimal value Definition Reference 

Dunn Max 
min

1⩽i⩽K

{

min
1⩽j⩽K,i∕=j

(

min
x∈Ci ,y∈Cj

d(x, y)/ max
1⩽k⩽K

{

max
a,b∈Ck

d(a, b)
})}

Dunn (1974) 

DB Min 1
K
∑K

i=1
max

1⩽j⩽K,i∕=j

⎧
⎨

⎩

⎡

⎣
1
ni

∑

x∈Ci

d(x, vi) +
1
nj

∑

x∈Cj

d
(
x, vj

)

⎤

⎦

/

d
(
vi, vj

)

⎫
⎬

⎭

Singh, et al. (2020) 

CH Max 1
K − 1

∑K
i=1

nid2(vi, v)/
1

N − K
∑K

i=1

∑

x∈Ci

d2(x, vi) Cengizler and Kerem-Un (2017) 

SIL Max 1
K
∑K

i=1

{
1
ni

∑

x∈Ci

[b(x) − a(x) ]/max[b(x), a(x)]

}

a(x) =
1

ni − 1
∑

y∈Ci ,x∕=y
d(x, y), b(x) = min

1⩽j⩽K,i∕=j

⎡

⎣1
nj

∑

y∈Cj

d(x, y)

⎤

⎦

Rousseeuw (1987) 

CVNN Min 
max
1⩽i⩽K

(
1
ni

∑ni

j=1

qj

k

)

+
∑K

i=1

[ 2
ni(ni − 1)

∑

x,y∈Ci

d(x, y)

]
Yanchi Liu, et al. (2013) 

DCVI Min ∑K
i=1max

e∈ETi

{W(e) }/ min
1⩽j⩽K,i∕=j

{

min
x∈Ci ,y∈Cj

(d(x, y) )
}

Xie, et al. (2020) 

SSDD Min ∑K
i=1

[
max(ACi ) − min(ACi )

max(ACi )
+

mean(PCi )

max{mean(PCi ),mean(ACi ) }

]

Liang, et al. (2020) 

COP Min 1
N
∑

Ci

|Ci|
1/|Ci|

∑
xj∈Ci

d(xj , vi)

minxj∕∈Ci maxxk∈Ci d(xj , xk)
Gurrutxaga, et al. (2010) 

IMI Min ∑K
i=1

(∑N
j=1u2

ij
⃦
⃦xj − vi

⃦
⃦2

∑N
j=1uij

)

min
i∕=k

δik‖vi − vk‖
2
+ median

i∕=k
δik‖vi − vk‖

2,δik =

∑N
i=1uik

∑N
i=1uij 

Yun Liu, et al. (2021) 

OS Min 
∑

Ci

∑
xj∈Ci

ov(xj,Ci)
∑

Ci
10/|Ci|

∑
max
xj∈Ci

(0.1|Ci|){d(xj , vi}
Žalik and Žalik (2011) 

PCAES Max ∑K
i=1
∑N

j=1u2
ij/uM −

∑K
i=1exp

(

− min
k∕=i

{‖xi − xk‖
2
}/βT

)

uM = min
1⩽i⩽K

{∑N
j=1u2

ij

}
, βT =

∑K
l=1‖vl − v‖2

K
, v =

∑K
i=1vi/K Wu and Yang (2005) 

SV Max ∑K
i=1minj∈[1,…,K],i∕=jd(vi, vj)
∑K

i=1maxxj∈Ci d(xj, vi)
Žalik and Žalik (2011) 

Sym Max maxK
i,j=1

⃦
⃦vi − vj

⃦
⃦
/(

K
∑K

i=1
∑ni

j=1d*
ps(x

i
j, vi)

)

Bandyopadhyay and Saha (2008) 

K: number of clusters; N: number of the all data points in dataset; Ci: the ith cluster of dataset; ni: number of data points in Ci; vi: the average of all data points in cluster 
Ci; v: the average of all data points in dataset; d(x, y): the Euclidean distance between data points x and y; ACi : the density of the region where two adjacent points on the 
backbone of cluster Ci are located; PCi : the density of region where the nearest data point pairs between clusters are located; ETi : the set of edges on the minimum 
spanning tree based on the representative points in cluster Ci; W(e): the weight of edge e on the minimum spanning tree; uik is the membership value of xi to vk; ov(⋅) 
represents the overlap degree; d*

ps measures the point symmetry between a data point and a cluster center.  
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Definition 4. (within-cluster augmented non-shared nearest neighbor 
pair) 

Assume that there exists any point pair xi and xj in cluster ct such that 
|NS(i, j)| < ε and e(xi,xj) ∈ ETX , where ε is the threshold value. Let ÑS(i)j 
and ÑS(j)i be the ANSNN set of xi with respect to xj and the ANSNN set of 
xj with respect to xi, respectively. The set of within-cluster augmented 
non-shared nearest neighbor pairs is defined by 

Ñct =

{

(xu, xv)

⃒
⃒
⃒

(

∃xu ∈ ÑS(i)j,∃xv ∈ ÑS(j)i

)

s.t. (xu, xv ∈ ct)

}

(10)  

Example 1. Assume that the dots in Fig. 2(a) represent the data points 
within the same cluster ct and the black lines represent the edges within the 

minimum spanning tree TX. As an example, let us consider the point pair a 
and b. Here, k in the k-nearest neighbors is set to 4 for the sake of illustration. 
The kNN sets of a and b are {a1, a2, b, b1} and {b1,b2,b3,a}, so the SNN set 
of a ad b is {b1}. Furthermore, the ANSNN set of a with respect to b is {a,a1,

a2}, while the ANSNN set of b with respect to a is {b,b2,b3}. In addition, the 
threshold value ε is set to 3 in this paper. So the point pair a and b satisfies 
that |NS(a, b)| < ε and e(a, b) ∈ ETX . Finally, the set of within-cluster 
augmented non-shared nearest neighbor pairs Ñct is {(a,b),(a,b2),(a,b3),⋯,

(a2,b2), (a2,b3)}, which consists of nine point pairs. 

Definition 5. (within-cluster compactness) 

If Ñct ∕= ∅, the within-cluster compactness is defined as the average 
distance of all pairs of augmented non-shared nearest neighbors within 
cluster ct, otherwise the within-cluster distance is determined by the 

DS1                DS2                 DS3                DS4

DS5                DS6  DS7                DS8

DS9                DS10                DS11               DS12

Fig. 6. Clustering results on 12 synthetic datasets using CTCEHC under true cluster number.  

Table 4 
The results on 12 two-dimensional synthetic datasets.  

Datasets DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8 DS9 DS10 DS11 DS12 Nhit 

T* 3 4 6 4 2 4 4 4 3 2 3 2 
Dunn 2 2 5 2 2 3 5 3 2 2 3 12 3 
DB 3 8 19 19 12 12 6 6 12 19 4 4 1 
CH 3 26 23 15 25 26 7 20 12 32 6 4 1 
SIL 3 7 22 10 10 9 6 6 12 19 6 4 1 
CVNN 3 7 8 4 12 5 6 7 3 11 4 4 3 
DCVI 3 4 6 4 2 4 21 3 3 2 3 2 10 
SSDD 3 3 7 3 2 3 4 2 3 2 3 3 6 
COP 3 7 22 16 15 11 7 6 11 17 6 4 1 
IMI 3 34 34 29 48 24 11 24 24 32 6 4 1 
OS 3 10 19 19 13 20 4 10 12 19 5 4 2 
PCAES 3 6 7 2 7 4 2 3 2 11 4 4 2 
SV 3 8 19 20 8 11 4 10 12 17 6 4 2 
Sym 3 4 18 11 13 22 6 13 3 24 5 4 3 
ANCV 3 4 6 4 2 4 4 3 3 2 3 2 11  
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average weight of ETct
. The within-cluster compactness of cluster ct is 

defined by 

com(ct) =

⎧
⎪⎨

⎪⎩

∑

(xu ,xv)∈Ñct

d(xu, xv)

/⃒
⃒
⃒
⃒Ñct

⃒
⃒
⃒
⃒ if Ñct ∕= ∅

∑

e(xi ,xj)∈ETct

d
(
xi, xj

)/⃒
⃒ETct

⃒
⃒ otherwise

(11)  

where ETct
⊂ETX , the edges in ETct 

are composed of the data points in the 
cluster ct, e(xi, xj) denotes the edge associated with the data points xi and 
xj. 

Definition 6. (between-cluster augmented non-shared nearest 
neighbor pairs) 

Given clusters cm and cn, assume that there exist any points xi and xj 

such that xi ∈ cm,xj ∈ cn, and e(xi, xj) ∈ ETX . Let ÑS(i)j and ÑS(j)i be the 
ANSNN set of xi with respect to xj and the ANSNN set of xj with respect to 

xi, respectively. The set of between-cluster augmented non-shared 
nearest neighbor pairs is defined by 

Ñcm ,cn =

{

(xu, xv)

⃒
⃒
⃒

(

∃xu ∈ ÑS(i)j,∃xv ∈ ÑS(j)i

)

s.t. (xu ∈ cm, xv ∈ cn)

}

(12)  

Example 2. In terms of the distribution of data points, Fig. 2(b) is similar 
to Fig. 2(a). The difference is that Fig. 2(b) contains both clusters cm and cn. 
The data points a and b belong to cm and cn, respectively, and there exists e(a,
b) ∈ ETX , then the set Ñcm ,cn constituted by the augmented non-shared nearest 
neighbor point pairs between cm and cn is the same as Ñct in Fig. 2(a), which 
also includes nine point pairs. 

Definition 7. (adjacent clusters) 

Given clusters cm and cn, assume that there exist any data points xi 
and xj such that xi ∈ cm,xj ∈ cn, and e(xi, xj) ∈ ETX , then cm and cn are 

(a) Dunn             (b) DB         (c) CH              (d) SIL

(e) CVNN            (f) DCVI            (g) SSDD           (h) COP

(i) IMI               (j) OS             (k) PCAES            (l) SV

(m) Sym (n) ANCV

Fig. 7. The relationship between cluster number and the 14 CVI values in DS3 under the CTCEHC algorithm.  
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(a) Dunn             (b) DB              (c) CH              (d) SIL

(e) CVNN            (f) DCVI            (g) SSDD            (h) COP

(i) IMI               (j) OS             (k) PCAES            (l) SV

(m) Sym (n) ANCV

Fig. 8. The relationship between cluster number and the 14 CVI values in DS7 under the CTCEHC algorithm.  

Table 5 
The results on 10 real datasets.  

DataSets R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 Nhit 

T* 3 2 2 6 3 3 2 4 2 7 
Dunn 3 6 5 2 3 9 7 4 4 7 4 
DB 5 15 31 2 2 8 13 3 10 9 0 
CH 5 2 2 2 3 5 2 3 2 2 5 
SIL 3 6 2 2 3 5 2 3 2 7 6 
CVNN 3 2 2 3 3 5 13 3 2 2 5 
DCVI 4 2 6 2 2 6 2 26 2 2 3 
SSDD 3 4 6 3 2 3 2 16 11 2 3 
COP 3 3 4 2 2 4 2 4 2 10 4 
IMI 3 13 2 2 2 9 10 3 7 6 2 
OS 38 14 32 9 4 10 13 45 67 10 0 
PCAES 2 6 14 2 3 8 4 4 2 2 3 
SV 5 14 32 15 2 8 13 4 64 9 1 
Sym 5 2 2 2 3 4 2 4 3 7 6 
ANCV 3 15 2 6 3 11 13 4 13 7 6  
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adjacent clusters, denoted by < cm, cn >. 

Corollary 1. An adjacent cluster pair < cm, cn > contains at least one pair 
of between-cluster augmented non-shared nearest neighbor pairs, i.e., 
Ñcm ,cn ∕= ∅. 

Proof: ∵ The clusters cm and cn are adjacent 
∴According to Definition 7, there exists the data point pair xi and xj 

such that e(xi,xj) ∈ ETX , xi ∈ cm,xj ∈ cn 

∵ According to Definition 3, xi ∈ ÑS(i)j,xj ∈ ÑS(j)i 
∴According to Definition 6, the point pair (xi,xj) ∈ Ñcm ,cn . 
∴An adjacent cluster pair < cm, cn > contains at least one pair of 

between-cluster augmented non-shared nearest neighbor pairs, i.e., 
Ñcm ,cn ∕= ∅□. 

Definition 8. (between-cluster separation) 

Given two adjacent clusters < cm, cn >, the between-cluster separa
tion is defined as the average distance between all pairs of between- 

cluster augmented non-shared nearest neighbors: 

sep(cm, cn) =
∑

(xu ,xv)∈Ñcm ,cn

d(xu, xv)

/⃒
⃒
⃒
⃒Ñcm ,cn

⃒
⃒
⃒
⃒ (13)  

Definition 9. (ANCV index) 

Assume that the dataset X is partitioned into K clusters C = {c1,c2,⋯,

cK}. The ANCV index is defined as the difference between the total 
between-cluster separation SEPK(X) and the total within-cluster 
compactness COMK(X): 

ANCVK(X) = SEPK(X) − COMK(X) (14)  

SEPK(X) =
1

K − 1
∑

sep(cm, cn) (15)  

(a) Dunn             (b) DB              (c) CH              (d) SIL

(e) CVNN            (f) DCVI            (g) SSDD            (h) COP

(i) IMI               (j) OS             (k) PCAES            (l) SV

(m) Sym (n) ANCV

Fig. 9. The relationship between cluster number and the 14 CVI values in Glass under the CTCEHC algorithm.  
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(a) Dunn             (b) DB              (c) CH              (d) SIL

(e) CVNN            (f) DCVI            (g) SSDD            (h) COP

(i) IMI               (j) OS            (k) PCAES            (l) SV

(m) Sym (n) ANCV

Fig. 10. The relationship between cluster number and the 14 CVI values in Wifilocalization under the CTCEHC algorithm.  

Table 6 
Parameter values and F1 values for Kernel k-means on 22 datasets.  

Datasets D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 

σ 0.20 0.12 0.12 0.12 0.15 0.16 0.23 0.14 0.15 0.42 0.17 
F1 1 1 0.5481 1 0.8168 0.5743 0.8472 0.9498 1 0.9133 0.8064 
Datasets D12 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 
σ 0.18 4.50 1.30 0.10 1.40 1.10 1.10 0.90 5.0 1.30 2.60 
F1 0.8758 0.4143 0.5174 0.4869 0.4135 0.9714 0.4432 0.5853 0.596 0.563 0.6254  

Table 7 
Parameter values and F1 values for DDC on 22 datasets.  

Datasets D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 

k 5 5 10 10 5 10 10 10 5 10 5 
λ 0.3 0.45 0.3 0.3 0.35 0.3 0.3 0.4 0.3 0.3 0.35 
F1 1 1 1 1 1 1 0.9993 0.9935 1 1 1 
Datasets D12 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 
k 5 5 10 5 5 10 5 5 10 5 5 
λ 0.6 0.75 0.3 0.3 0.5 0.3 0.3 0.3 0.5 0.3 0.3 
F1 0.991 0.4626 0.3354 0.4662 0.4758 0.4572 0.5545 0.5929 0.6809 0.5509 0.7478  
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COMK(X) =
1
K

∑K

i=1
com(ci) (16) 

Algorithm 1 gives detailed steps for implementing the ANCV index.  
Algorithm 1: ANCV 

Input: Data set X containing N data points, X is partitioned into 2, 3,⋯, 
̅̅̅̅
N

√
clusters {ci}, the value of k in the k-nearest neighbors,ε = 3 

Output: Optimal cluster number OptK 

1 for i = 1 to N do 
2 for j = 1 to N do 
3 if i ∕= j then 
4 Calculate NS(i, j),NS(i)j,ÑS(i)j according to Eqs. (6), (7), 
5 and (9), respectively 
6 end 
7 end 
8 end 
9 for K = 2 to 

̅̅̅̅
N

√
do 

10 for j = 1 to K do 
11 Calculate Ñcj , com

(
cj
)
, according to Eqs. (10) and (11), 

12 respectively 
13 end 
14 end 
15 for K = 2 to 

̅̅̅̅
N

√
do 

16 for m = 1 to K − 1 do 
17 for n = m+1 to K do 
18 if cm and cn are adjacent clusters then 
19 Calculate Ñcm ,cn , sep(cm, cn) according to Eqs. (12) and 
20 (13), respectively 
21 end 
22 end 
23 end 
24 end 
25 for K = 2 to 

̅̅̅̅
N

√
do 

26 Calculate ANCVK(X) according to Eqs. (14) (15) and (16) 
27 end 
28 OptK = argmax ANCVK(X)

3.2. An explanation of ANCV 

In this paper, we extend our analysis from the point pairs with fewer 
SNN within a cluster to the within-cluster ANSNN pairs, so that several 
small clusters are formed, and we calculate the distance between the 
small clusters to measure the within-cluster compactness, which has the 
advantage of avoiding the ANCV index being influenced by the cluster 
shape. For example, Fig. 3 shows the clustering results obtained using 
the NTHC algorithm for the Smile Face dataset (Ma, et al., 2021) by K =
3, 4, and 5. As shown in Fig. 3(a), (c), and (e), the blue triangles indicate 
the within-cluster augmented non-shared nearest neighbor pairs, while 
the pairs with shared nearest neighbor number less than 3 are connected 
by blue lines. These point pairs form small clusters whose shape is not 
significantly affected by the shape of the cluster. Moreover, if the cluster 
number is smaller than the real number, the clustering algorithm will 
mistakenly merge multiple clusters into one. As an example, Fig. 3(a) 
shows the clustering results of three clusters, where the cluster marked 
with black dots indicates that the clustering algorithm wrongly merged 
two clusters into one. Fig. 3(a) illustrates that the distance between the 
augmented non-shared neighbor pairs at the intersection of the two 
clusters is relatively large. Since the within-cluster compactness of this 
cluster is large, the total within-cluster compactness COM3(X) is also of a 
high level. As shown in Fig. 3(c), the clustering results are correct when 
K = 4, so there is no similar situation. 

When measuring the inter-cluster separation, the point pairs be
tween adjacent clusters are selected as representative points, and the 
representative points are further extended to their augmented non- 
shared nearest neighbors so that small clusters are formed at the inter
section of adjacent clusters and the inter-cluster separation can be 
estimated by the average distance between the point pairs between the 
small clusters. The proposed inter-cluster separation measure can also 
reduce the influence of cluster shape. In Fig. 3(b), (d), and (f), blue 
triangles represent the between-cluster augmented non-shared nearest 
neighbor pairs and blue lines represent the point pairs that have edges 
on the minimum spanning tree. When K = 3, there are between-cluster 
augmented non-shared nearest neighbor pairs between red and black 
clusters, and green and black clusters, respectively. As shown in Fig. 3 
(d), when K = 4, the between-cluster augment non-shared nearest 
neighbor pairs are added between the yellow and green clusters on the 
basis of K = 3. According to Fig. 3(f), when K = 5, the green and yellow 
clusters should originally form the same cluster, and sep(cred, cgreen) is 
relatively smaller, thus making SEP5(X) smaller than SEP4(X). 

Fig. 4 illustrates the clustering evaluation results of the Smile Face 
dataset using the ANCV index, where K varies from 2 to 26 and the red, 
blue, and green lines represent the within-cluster compactness, 
between-cluster separation and the ANCV index results of the dataset, 
respectively. Fig. 4 shows that COM4(X) is much smaller than COM2(X)
and COM3(X) when K is equal to the true cluster number 4. The curve 
associated with COMK(X) tends to become more stable as K increases. 
Additionally, SEP4(X) is significantly larger than SEP3(X) and SEP5(X). 
Therefore, when K = 4, the ANCV index value has the highest value, thus 
defining 4 as the optimal cluster number. 

3.3. Time complexity 

In Algorithm 1, Lines 1–8 construct the minimum spanning tree TX 

and calculate Ns(i, j),NS(i)j, and ÑS(i)j. Construction of the minimum 
spanning tree and computing the k-nearest neighbors of data points can 
be combined to reduce computing time. Given dataset X with N data 
points, the time complexity of constructing the minimum spanning tree 
using Prim algorithm (L. Liu, Ma, Zhang, Zhang, & Li, 2017) is O(N2), 
and the time required to calculate the shared and non-shared nearest 
neighbors between point pairs is about O(N). 

Lines 9–14 in Algorithm 1 calculates the within-cluster compactness 
com(cj). When data point pairs satisfying the threshold condition exist in 

Table 8 
The results of five clustering algorithms on 12 two-dimensional synthetic 
datasets.  

Datasets T* Kernel k-means CTCEHC NTHC SMKNN DDC 

DS1 3 3 3 3 3 3 
DS2 4 4 4 4 4 4 
DS3 6 20 6 6 6 6 
DS4 4 4 4 4 4 4 
DS5 2 10 2 2 2 2 
DS6 4 12 4 4 4 4 
DS7 4 4 4 3 3 4 
DS8 4 13 3 4 2 4 
DS9 3 3 3 3 3 3 
DS10 2 7 2 2 2 2 
DS11 3 6 3 3 3 3 
DS12 2 2 2 2 2 2 
Nhit 6 11 11 10 12  

Table 9 
The results of five clustering algorithms on 10 real datasets.  

Datasets T* Kernel k-means CTCEHC NTHC SMKNN DDC 

R1 3 3 3 2 4 3 
R2 2 10 15 2 6 15 
R3 2 2 2 2 2 11 
R4 6 3 6 11 6 6 
R5 3 3 3 3 3 2 
R6 3 4 11 3 3 3 
R7 2 17 13 2 15 14 
R8 4 4 4 3 4 4 
R9 2 3 13 2 4 2 
R10 7 6 7 7 5 5 
Nhit 4 6 7 5 5  
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each cluster, the time complexity of computing the within-cluster 

compactness com(cj) is approximately O(K
⃒
⃒
⃒
⃒Ñcj

⃒
⃒
⃒
⃒). In contrast, when no 

data point pair satisfies the threshold condition, the time complexity of 

computing the within-cluster distance com(cj) is about O(K
⃒
⃒
⃒ETcj

⃒
⃒
⃒). 

Lines 15–24 in Algorithm 1 calculates the between-cluster separation 
sep(cm, cn). The time required to calculate the between-cluster distance 

sep(cm, cn) is about O(

⃒
⃒
⃒
⃒Ñcm ,cn

⃒
⃒
⃒
⃒). 

Lines 25–28 in Algorithm 1 calculate ANCVK(X) and the time 

complexity of this part can be ignored. 
In summary, the time complexity required for the ANCV index is 

approximately O(N2)+O(N)+O(K
⃒
⃒
⃒
⃒Ñcj

⃒
⃒
⃒
⃒)(or O(K

⃒
⃒
⃒ETcj

⃒
⃒
⃒)) + O(

⃒
⃒
⃒
⃒Ñcm ,cn

⃒
⃒
⃒
⃒). 

4. Experiments and results 

In this section, we evaluate the performance of the ANCV index using 
12 two-dimensional synthetic datasets and 10 real datasets from UCI 
(Cheng, et al., 2018; Kwon & Sim, 2013; Xie, et al., 2020). Fig. 5 shows 
12 two-dimensional synthetic datasets. Tables 1 and 2 provide the 

=2             =3           =4                =5

=6         =7        =8                =9

Fig. 11. The point pairs (indicated by red lines) that satisfy the number of shared nearest neighbors less than ε on the Smile Face dataset, where the clustering results 
of CTCEHC under the optimal number of clusters identified by ANCV are also shown. 
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Fig. 12. The Nhit values for 12 two-dimensional synthetic datasets under 
different ε values. 
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Fig. 13. The Nhit values for 10 real datasets under different ε values.  
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descriptions of the 12 two-dimensional synthetic datasets and 10 real 
datasets, respectively. Our experiments used five clustering algorithms, 
Kernel k-means, CTCEHC, NTHC, SMKNN, and DDC, to carry out the 
classification. A total of 13 indices are compared with the ANCV Index, 
including Dunn, DB, CH, SIL, CVNN, DCVI, SSDD, COP, IMI, OS, PCAES, 
SV, and Sym. A detailed description of these 13 indices is shown in 
Table 3. As a rule of thumb, we set the range of cluster numbers to [2,
̅̅̅̅
N

√
]. The experimental environment is an Intel i7-11800H computer 

with 16G of RAM, and the software used is MATLAB2021a. In addition, k 
in the k-nearest neighbors and the threshold ε in the ANCV index are set 
to 10 and 3, respectively. The source code of the proposed algorithm is 
available online at https://github.com/xjDUAN184/ANCV-validit 
y-index/tree/master. 

4.1. Test on 12 synthetic datasets 

According to Table 1, DS1 is composed of three spherical clusters, 
while DS2 is composed of four linear clusters. DS3 and DS11 contain 
clusters of both linear and spherical shapes. Both DS4 and DS9 have ring- 
shaped and spherical clusters. Both DS5 and DS6 consist of multiple arc- 
shaped clusters. DS7 has four spherical clusters of varying densities. DS8 
and DS12 are composed of spherical and arc-shaped clusters. DS10 
consists of two ring-shaped clusters. 

To evaluate the performance of the ANCV index, the 12 synthetic 
datasets were clustered using the CTCEHC algorithm. Fig. 6 shows the 
clustering results of CTCEHC. As seen in Fig. 6, CTCEHC obtained cor
rect clustering results for all 12 synthetic datasets under the true number 
of clusters. And experiments were conducted on 14 validity indices, 
including ANCV. Table 4 lists the experimental results, where T* rep
resents the true cluster number, Nhit is the number of times the index 
correctly identifies the cluster number, and the bold number indicates 
that the result is identical to the true cluster number. 

As shown in Table 4, the DB, CH, SIL, COP, and IMI indices can only 
correctly obtain the cluster number of DS1, but not those of the other 
datasets. It is primarily due to the fact that these indices are highly 
dependent on clustering centers, and if the clustering centers are 
incorrect, then the results of the indices will also be incorrect. The 
performance of OS and SV is slightly higher than the above-mentioned 
indices, and they get the correct cluster number of both DS1 and DS7 
datasets. The 14 indices, except for the Dunn index, correctly identify 
the cluster number for DS1, which consists of three spherical clusters. 
The six indices Dunn, CVNN, DCVI, SSDD, Sym, and ANCV performed 
well on at least three datasets. The Sym index is effective for internal 
symmetric datasets DS1, DS2, and DS9. All four indices Dunn, DCVI, 
SSDD, and ANCV are effective on DS5 and DS10, which contain arc- and 
ring-clusters. The SSDD index can also obtain the correct cluster number 
for the four datasets DS1, DS7, DS9, and DS11, indicating that SSDD can 
identify clusters of different shapes and densities. ANCV and DCVI are 
both effective for at least 10 datasets, and their performance is superior 
to that of the other 12 indices. Overall, the ANCV index is the most stable 

of the 14 indices and performs well on 11 datasets. 
Figs. 7 and 8 illustrate the relationship between cluster number and 

the 14 CVI values in DS3 and DS7 under the CTCEHC algorithm, 
respectively. The red dots indicate the optimal number of clusters ob
tained by the respective index. Since the DCVI index evaluates the 
clustering result according to the selected denser points, the range of the 
number of clusters for this index is smaller than that of the other indices. 
For DS3, both ANCV and DCVI indices obtained the correct optimal 
cluster number. DS7 consists of four spherical clusters of different den
sities. Despite Dunn, DB, CH, SIL, and COP performing better for 
spherical clusters, these indices are unable to identify the correct num
ber of clusters due to the large difference in density between clusters. 
SSDD, OS, SV, and ANCV can accurately determine the optimal number 
of clusters for DS7. 

4.2. Test on 10 real datasets from UCI 

To further evaluate the performance of the ANCV index, the 10 real 
datasets were clustered using the CTCEHC algorithm. And experiments 
were conducted on 14 validity indices, including ANCV. Table 5 lists the 
experimental results, where T* represents the true cluster number, Nhit is 
the number of times the index correctly identifies the cluster number, 
and the bold number indicates that the result is identical to the true 
cluster number. The datasets in Table 5 are represented by abbreviations 
listed in Table 2 to save table space. For the R1 dataset, the true cluster 
number can be detected by seven indices, including Dunn, SIL, CVNN, 
SSDD, COP, IMI, and ANCV. There are also seven indices valid for the R5 
dataset, including Dunn, CH, SIL, CVNN, PCAES, Sym, and ANCV. Six 
indices can determine the correct number of clusters in each of the four 
datasets R3, R7, R8, and R9. Furthermore, for the R4 and R6 datasets, 
only one index (ANCV and SSDD, respectively) can identify the correct 
cluster number. For all 10 datasets, both the DB and OS indices are 
invalid. Both the CH and SIL indices can obtain the correct number of 
clusters for the R3, R5, R7, and R9 datasets. Among the 14 indices, SIL, 
Sym, and ANCV have the most robust performance and are valid for six 
datasets. 

Figs. 9 and 10 illustrate the relationship between cluster number and 
the 14 CVI values in Glass and Wifilocalization under the CTCEHC al
gorithm, respectively. The red dots indicate the optimal number of 
clusters obtained by the respective index. For Glass, only ANCV got the 
correct number of clusters. Dunn, COP, PCAES, SV, Sym, and ANCV 
provide the correct number of clusters for Wifilocalization. 

4.3. Application of ANCV to other clustering algorithms 

To evaluate the performance of ANCV under different clustering al
gorithms, we conducted experiments on 12 synthetic and 10 real data
sets using five clustering algorithms: Kernel k-means, CTCEHC, NTHC, 
SMKNN, and DDC. These five clustering algorithms can identify non- 
spherical clusters. The Kernel k-means algorithm utilizes the Gaussian 
kernel function, whose parameters σ are listed in Table 6. Table 7 pro
vides values for the parameters k and λ involved in the DDC algorithm. 
Moreover, Tables 6 and 7 show the F1 values of Kernel k-means and DDC 
algorithms under the given parameters as well as the true cluster num
ber. The larger the F1 value, the better the clustering effect. For the 
Kernel k-means and DDC algorithms, we used coarse grid search to 
determine the optimal parameter values for 22 datasets to ensure that 
they performed optimally with the true number of clusters. Additionally, 
the parameters involved in the three clustering algorithms CTCEHC, 
NTHC, and SMKNN are used with their default values. 

In our experiments, the above five clustering algorithms were 
applied to the synthetic and real datasets, respectively, and then ANCV 
was used to obtain the optimal number of clusters. Tables 8 and 9 pre
sent the corresponding results, where T* represents the true cluster 
number, Nhit is the number of times the index correctly identifies the 
cluster number, and the bold number indicates that the result is identical 

Table 10 
F1 and AMI values for CTCEHC based on the given optimal cluster number by 
ANCV.  

Datasets F1 AMI Datasets F1 AMI 

DS1 1 1 DS12 1 1 
DS2 1 1 R1 0.3842 0.0072 
DS3 1 1 R2 0.4710 0.1761 
DS4 1 1 R3 0.5476 0.0063 
DS5 1 1 R4 0.6103 0.2892 
DS6 1 1 R5 0.9571 0.8534 
DS7 1 1 R6 0.4162 0.1428 
DS8 0.9023 0.9157 R7 0.5197 − 0.0024 
DS9 1 1 R8 0.8719 0.7738 
DS10 1 1 R9 0.3459 0.0221 
DS11 1 1 R10 0.7691 0.8307  
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to the true cluster number. 
As seen in Table 8, the five clustering algorithms obtained the correct 

number of clusters on five datasets, DS1, DS2, DS4, DS9, and DS12. 
ANCV can correctly identify the number of clusters for more than 10 
datasets using four clustering algorithms, CTCEHC, NTHC, SMKNN, and 
DDC. ANCV has the worst performance on Kernel k-means and can only 
identify a total of six datasets, DS1, DS2, DS4, DS7, DS9, and DS12. And 
all these six datasets have F1 values close to 1 in Table 6. The remaining 
six datasets had lower F1 values. Additionally, ANCV correctly identi
fied all 12 datasets with DDC. According to Table 7, all 12 datasets have 
F1 values close to 1. Thus, ANCV can obtain the correct number of 
clusters for an accurate clustering result. However, when the clustering 
result is inaccurate, it is difficult for ANCV to determine the correct 
number of clusters. 

We further analyze the results in Table 9. ANCV on the real dataset 
has a lower Nhit value than on the synthetic datasets. It is due to the fact 
that the real datasets have higher dimensionality than synthetic data
sets, as well as a more complex distribution of data points. In addition, 
ANCV produced fewer differences in Nhit values for these five clustering 
algorithms. Similarly to the synthetic dataset, we can conclude from 
Tables 8 and 9 that the goodness of the clustering results influences 
ANCV performance. 

5. Discussion 

This section discusses the parameters ε involved in ANCV. According 
to Definition 4, only point pairs with fewer than ε shared nearest 
neighbors are used to calculate within-cluster compactness. Thus, 
within-cluster compactness is defined as the average distance of all pairs 
of augmented non-shared nearest neighbors within a cluster, where 
these pairs are derived from point pairs with a shared nearest neighbor 
number less than ε. ε has a value range of [1, k + 1], where k is the 
number of nearest neighbors. There are no shared nearest neighbors 
between point pairs when ε = 1, whereas all point pairs satisfy the 
condition when ε = k + 1. 

Fig. 11 shows the point pairs (indicated by red lines) on the Smile 
Face dataset that satisfy a shared nearest neighbor number less than ε 
under different values of ε. In addition, Fig. 11 also shows the clustering 
results of CTCEHC for the optimal number of clusters identified by 
ANCV. Fig. 11 illustrates that when ε is small, there are fewer point pairs 
in the cluster, or perhaps none at all. In this case, the within-cluster 
compactness equals the average weight of the minimum spanning tree 
within the cluster according to Definition 5. This will result in a small 
value for within-cluster compactness, which cannot accurately reflect 
the distribution of data points within the cluster. As ε increases, there are 
more point pairs in the cluster, which indicates that most point pairs in 
the cluster contribute to the within-cluster compactness. As a result, the 
final result may not necessarily reflect the distribution of data points 
within the cluster. Thus, the performance of ANCV is influenced by the 
value of ε. 

Following are the experiments conducted to determine a more 
appropriate ε value. We first cluster 12 two-dimensional synthetic 
datasets and 10 real datasets using Kernel k-means, CTCEHC, NTHC, 
SMKNN, and DDC five algorithms, respectively. Next, calculate the 
number of times (expressed by Nhit) the ANCV index correctly identifies 
the cluster number under different values of ε. Figs. 12 and 13 show the 
Nhit values of ANCV on 12 synthetic datasets and 10 real datasets, 
respectively. As can be seen in Figs. 12 and 13, Nhit values are lower 
when ε greater than 4. When ε = 3, all five clustering algorithms have 
larger Nhit values. Therefore, we set ε to 3 in this paper. 

Additionally, the clustering effect plays a role in the performance of 
ANCV. Further explanation is provided by the following experiments. As 
a first step, CTCEHC is used to cluster 12 two-dimensional synthetic 
datasets and 10 real datasets, and then ANCV is applied to determine the 
optimal number of clusters. Next, we evaluate the clustering effect using 
F1 and AMI (Chowdhury, Bhattacharyya, & Kalita, 2021), two external 

clustering validity indices. Table 10 lists the values of F1 and AMI, 
where the bold number indicates that ANCV provides the correct num
ber of clusters for the corresponding dataset. The greater the F1 and 
AMI, the better the clustering effect. Table 10 shows that, except for 
DS8, ANCV is effective on the remaining 11 synthetic datasets, and the 
corresponding F1 and AMI values reach a maximum of one. For real 
datasets, ANCV is effective on the R5, R8, and R10 datasets, and the 
corresponding F1 and AMI values on these datasets are much greater 
than those on the rest of the datasets. ANCV is also capable of correctly 
identifying the cluster number for the three datasets R1, R3, and R4 
despite their small F1 and AMI values. 

Because ANCV has a time complexity greater than O(N2), it is not 
suitable for processing massive datasets. A parallel version of ANCV can 
be developed to reduce its complexity. Many of the operations of ANCV 
are focused on constructing a minimum spanning tree. We can use a 
parallel algorithm on the GPU to obtain a minimum spanning tree (de 
Alencar Vasconcellos, Cáceres, Mongelli, & Song, 2017; Prokopenko, 
Sao, & Lebrun-Grandie, 2022). In addition, the calculation of within- 
cluster compactness focuses primarily on the determination of within- 
cluster augmented non-shared neighbor point pairs. Multiple threads 
can be assigned to different point pairs on the minimum spanning tree, 
which are processed by the GPU in parallel. The calculation of between- 
cluster separation is mainly focused on determining the augmented non- 
shared neighbor point pairs between clusters. Multiple threads can also 
be assigned to point pairs located between clusters so that the GPU can 
process them concurrently. 

6. Conclusion 

In this paper, a new cluster validity index is proposed. The proposed 
index is based on the point pairs with fewer shared nearest neighbors. 
And the within-cluster and between-cluster augmented non-shared 
nearest neighbors are taken as the representative points. The average 
distance between these representative points is taken as within-cluster 
compactness and between-cluster separation. 

The core ideas of the proposed index include the following: (1) We 
search for small clusters with a relatively loose distribution within the 
cluster, and use the average distance between the point pairs within 
these small clusters as an indicator of the within-cluster compactness of 
the entire cluster. As a result, the index performance is less affected by 
the shape of the cluster. Another advantage is that when two clusters are 
incorrectly merged into one cluster, the within-cluster compactness of 
the smaller clusters within the wrongly merged cluster is greater than 
the within-cluster distances of the two separate clusters, respectively, 
thus better reflecting the distribution of data points within the cluster. 
(2) The average distance between pairs of data points at the intersection 
of two clusters is used as the between-cluster separation, making the 
index performance less influenced by the cluster shape. In our experi
ments, we selected five clustering algorithms, Kernel k-means, CTCEHC, 
NTHC, SMKNN, and NTHC, to cluster 12 synthetic datasets and 10 real 
datasets, respectively, and compared CTCEHC with Dunn, DB, CH, SIL, 
CVNN, DCVI, SSDD, COP, IMI, OS, PCAES, SV, and Sym for a total of 13 
indices. And the experimental results showed that the ANCV index had 
the best performance. 

As a result of our experiments, we found that it is harder to find the 
correct number of clusters to compute the ANCV index if the clustering 
results are incorrect for the real number of clusters. To address this issue, 
we will continue to improve the ANCV index in future studies so that it 
can be adapted to different clustering situations. 
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