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The true cluster number of the dataset in practical applications is rarely known in advance. Therefore, it is
necessary to use a cluster validity index to evaluate the clustering results and determine the optimal cluster
number. However, the performance of existing cluster validity indices is vulnerable to various factors such as
cluster shape and density. To solve the above issues, this paper proposes a new cluster validity index based on
augmented non-shared nearest neighbors (ANCV). The ANCV index is based on the following principles: (1)
Within-cluster compactness can be measured by the distance between the pairs of data points with fewer shared
nearest neighbors. (2) The distances between the pairs of data points at the intersection of clusters can be used to
estimate the between-cluster separation. On this basis, the above point pairs are further extended to their
augmented non-shared nearest neighbors, thereby forming small clusters. Then, the average distance within and
between these clusters is calculated respectively to estimate the within-cluster compactness and between-cluster
separation. Finally, the optimal number of clusters is determined by the difference between the between-cluster
separation and the within-cluster compactness. Experimental results on both 12 two-dimensional synthetic
datasets and 10 real datasets from UCI have shown that the ANCV index performs the best among all compared

indices.

1. Introduction

In cluster analysis, objects are grouped into clusters so that those in
the same cluster are more similar and those in different clusters are less
similar. Cluster analysis has been widely applied in recent years to fields
such as artificial intelligence, biomedicine, machine learning, and ge-
netics. Many algorithms for clustering are based on finding the cluster
centers, such as the K-means algorithm (Yang, Ma, Zhang, Li, & Zhang,
2017) and the density peak clustering (DPC) algorithm (Rodriguez &
Laio, 2014). One of the main disadvantages of the K-means algorithm is
that it cannot identify non-spherical datasets. Kernel k-means (X. Liu,
2022; X. Liu, et al., 2019) is an extension of standard K-means clustering
that identifies non-spherical clusters by expressing the distance in the
form of a kernel function. Clustering algorithms such as hierarchical
clustering divide and merge clusters based on between-cluster distance
(Pfeifer & Schimek, 2021). Other clustering algorithms, such as DBSCAN
(Hahsler, Piekenbrock, & Doran, 2019), utilize the distribution of den-
sities within and between clusters.

In addition, some algorithms represent data points as minimum
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spanning tree or nearest neighbor graph. The multi-stage hierarchical
clustering algorithm (CTCEHC) uses the centroid of the minimum
spanning tree to determine the cluster center (Ma, Lin, Wang, Huang, &
He, 2021). The neighborhood-based three-stage hierarchical clustering
algorithm (NTHC) performs clustering by shared nearest neighbors and
1-nearest neighbor (Wang, Ma, & Huang, 2021). Furthermore, a split-
merge clustering algorithm based on the k-nearest neighbor graph
(SMKNN) is proposed, where the KNN graph guides the clustering pro-
cess (Wang, Ma, Huang, Wang, & Acharjya, 2023). The DDC algorithm
uses densities decreased chains to cluster data of any shape and density
(Li & Cai, 2022). While these algorithms are effective for non-spherical
clusters, they all require the input of a cluster number, since the true
cluster number is frequently unknown at the time of clustering. There-
fore, the cluster validity indices (CVIs) are used to evaluate the clus-
tering results for different cluster numbers and determine the optimal
cluster number.

There are two types of CVIs: internal index and external index. The
external index compares the clustering results with the true labels. There
are three main categories of external validity indices: pair-counting, set-
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Fig. 1. A schematic diagram of the proposed algorithm.

(b) Between-cluster augmented non-shared nearest neighbor pairs

Fig. 2. Within-cluster and between-cluster augmented non-shared nearest
neighbor pairs.

matching, and information theory (van der Hoef & Warrens, 2019). The
pair-counting measures count the number of point pairs that differ or
agree between two clustering results. The Rand index (Rand, 1971) and
the adjusted Rand index (ARI) (Hubert & Arabie, 1985) are two
commonly used pair-counting measures. As opposed to comparing pairs
of points, set-matching measures compare pairs of clusters. Examples of
set-matching measures are Fl-measure (F1) (de Souto, et al., 2012),
Purity (Rendon, Abundez, Arizmendi, & Quiroz, 2011), and Centroid

Ratio (CR) (Zhao & Franti, 2013). Information-theoretic measures are
used to determine how much information is shared between two parti-
tions. In recent years, information-theoretic indices have become
increasingly popular since they are based on strong mathematical
foundations (Lei, et al., 2016; Shannon, 1948). The Entropy index
measures the purity of the cluster class labels (Rendon, et al., 2011). In
addition, information-theoretic indices include variations in informa-
tion and different normalizations of mutual information (MI) (Meila,
2007; Pfitzner, Leibbrandt, & Powers, 2009).

Unlike the external index, the internal index evaluates clustering
results directly. Since the true labels of data points are often difficult to
obtain, internal indices are better suited for verifying the validity of the
clustering results. Common internal indices are the Davies-Bouldin
index (DB) (Singh, Mittal, Malhotra, & Srivastava, 2020), Silhouette
index (SIL) (Rousseeuw, 1987), COP (Gurrutxaga, et al., 2010), Calinski-
Harabasz (CH) (Cengizler & Kerem-Un, 2017), and Dunn-index (Dunn,
1974), etc. These indices, however, are only applicable to spherical
clusters. For example, the DB index uses the average value of the data
points within a cluster as the center of the cluster. If the cluster center is
chosen incorrectly, the optimal cluster number can be incorrect for
arbitrarily shaped clusters.

Furthermore, some internal indices involve membership in fuzzy c-
means clustering algorithm, such as PCAES (Wu & Yang, 2005) and IMI
(Yun Liu, Jiang, Hou, & Liu, 2021). Compared to other indices, the
PCAES index is less affected by noise, but more affected by the initial
cluster centers. For unbalanced datasets, the IMI index performs well. As
these indices are dependent on cluster centers, they will produce inac-
curate results if the cluster center is incorrect. The SV and OS indices
(Zalik & Zalik, 2011) solve this problem by calculating compactness and
overlap measures based on a few data points in the cluster. However, the
OS index performs significantly worse when there is an overlap between
clusters. Aside from Euclidean distances, there are also indices based on
point symmetry distances, such as the Sym index (Bandyopadhyay &
Saha, 2008). The Sym index, however, is only applicable to datasets that
are internally symmetric.

Several internal indices for arbitrarily shaped clusters have been
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Fig. 3. Clustering results of the Smile Face dataset using the NTHC algorithm with blue triangles indicating the within-cluster and between-cluster augmented non-

shared nearest neighbor pairs.

proposed in recent years. The STR index (Starczewski, 2017) uses knee
point detection based on the DB index. The CVNN index (Yanchi Liu,
et al., 2013) combines the idea of k-nearest neighbors to measure the
between-cluster distance based on the nearest neighbor distribution of
the data points. The BWC index (Zhou, Liu, & Song, 2021) and the LCCV
index (Cheng, Zhu, Huang, Wu, & Yang, 2018) both suggest improve-
ments to the SIL index. The former measures distances within and be-
tween clusters using the average distance between the center and the

points within a cluster and the shortest distance between the centers of
different clusters. The latter uses the concept of natural nearest neigh-
bors to calculate the density kernels. And the between-cluster distance is
determined by the geodesic distances between density kernels. The DCVI
index (Xie, Xiong, Dai, Wang, & Zhang, 2020) constructs a minimum
spanning tree for the density kernel and uses the minimum spanning tree
to compute within-cluster and between-cluster distances. In addition,
the SSDD index (Liang, Han, & Yang, 2020) evaluates the clustering
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Fig. 4. The clustering evaluation results of the Smile Face dataset using the
ANCYV index, where K varies from 2 to 26 and the red, blue, and green lines
represent the within-cluster compactness, between-cluster separation, and the
ANCV index results, respectively.

results based on the variation in density between density kernels. These
indices are effective for arbitrarily shaped clusters, however, they are
less effective if the dataset contains clusters of varying densities.

In this paper, the proposed CVI is guided by the following principles:
(1) The within-cluster compactness is related to the distance between
the data point pairs with fewer shared nearest neighbors within a clus-
ter. (2) The between-cluster separation can be measured by the distances
between the non-shared nearest neighbor pairs located at the intersec-
tion of adjacent clusters. Accordingly, this paper proposes a new cluster
validity index based on augmented non-shared nearest neighbors
(ANCV). We first construct a minimum spanning tree according to the

Expert Systems With Applications 223 (2023) 119784

distance between points in the dataset. Secondly, we determine the
within-cluster compactness and between-cluster separation by the dis-
tances between pairs of augmented non-shared nearest neighbors
located within and between clusters, respectively. Lastly, the optimal
number of clusters is determined by evaluating the difference between
the between-cluster separation and the within-cluster compactness.
Experimental results on both synthetic and real datasets have shown
that the proposed index performs the best among all compared indices.

In this study, we aim to develop a cluster validity index whose per-
formance is less affected by the density and shape of the clusters. Fig. 1
shows a schematic diagram of the proposed algorithm. We now briefly
analyze the proposed algorithm in two aspects. (1) The within-cluster
compactness is determined by the average distance between pairs of
within-cluster augmented non-shared nearest neighbors, which are
derived from point pairs with fewer shared nearest neighbors. In addi-
tion, point pairs with fewer shared nearest neighbors are determined by
the distribution of local data points within a cluster rather than the
shape and density of the entire cluster. (2) The between-cluster sepa-
ration is determined by the average distance between pairs of between-
cluster augmented non-shared nearest neighbors. These point pairs are
derived based on the distribution of local data points between clusters
regardless of the shape or density of the entire cluster. In conclusion, the
proposed cluster validity index is effective for clusters of varying shapes
and densities in the dataset.

The remainder of this paper is organized as follows. Section 2 pro-
vides a brief overview of existing CVIs and their shortcomings. Section 3
describes the proposed index in this paper. Experimental results on
synthetic and real datasets are given in Section 4. Section 5 discusses
several factors that affect ANCV performance. In section 6, we present
our conclusions and discuss future research directions.

2. Related work

In recent years, researchers have proposed a variety of different CVIs.

5WM
s

DS9 DS10

DSI11 DS12

Fig. 5. 12 two-dimensional synthetic datasets.



X. Duan et al.

Table 1
The description of 12 two-dimensional synthetic datasets.

Expert Systems With Applications 223 (2023) 119784

Dataset Data size Cluster number Spherical cluster Ring-shaped cluster Arc-shaped cluster Linear cluster
DS1 600(200,200,200) 3 3
DS2 1268(466,382,213,207) 4 4
DS3 1741(623,691,106, 6 4 2
103,113,105)
DS4 1015(407,187,224,197) 4 3 1
DS5 4811(2520,2291) 2 2
DS6 630(410,58,100,62) 4 4
DS7 863(421,86,294,62) 4 4
DS8 644(201,181,161,101) 4 1 3
DS9 999(333,333,333) 3 2 1
DS10 1000(500,500) 2 2
DS11 400(200,100,100) 3 1 2
DS12 240(87,153) 2 1 1
neighbors belonging to different clusters are considered as representa-
Table 2 tive points for the CVNN algorithm. And the size of the between-cluster
The description of 10 real datasets. distance depends on the weights of these representative points. The
Datasets Abbreviations ~ Data Dimensionality =~ Number of details are as follows:
size clusters
ni
Contraceptive R1 1473 9 3 Sep(NC,k) = max 1 Z@ 3)
Connectionist R2 208 61 2 i=l2..NC\ n; S k
German R3 1000 24 2
f:j{s Eg 5;4 30 2 where n; is the number of data points in cluster C;, k is the number of
Pittsburg-bridges- R6 103 7 3 nearest neighbors, and g; is the number of nearest neighbors in the k-
REL-L nearest neighbors of the jth point in cluster C; that are in different
Sonar R7 208 60 2 clusters.
Wifilocalization RS 2000 7 4 The CVNN index defines within-cluster distance as the average dis-
Wwilt R9 4839 2 t bet 1 int . ithi lust
700 R10 101 P 7 ance between all point pairs within a cluster.

Traditionally, the clustering results are evaluated by using a single data
point as a representative for the cluster. For example, the DB index uses
the cluster center as a representative of the cluster. The minimum value
of the DB index indicates the minimum within-cluster distance and the
maximum between-cluster distance, which reflects the most reasonable
partitioning of the dataset. The DB index is defined as follows:

1 K avg(C;) +avg(C/-)
DB(K) = e ; mex {7(1(‘}“ 0) @

where K denotes the number of clusters, v; and v; are the average of all
the data points in clusters C; and C;, respectively, and avg(C;) and avg(C;)
denote the within-cluster distances of clusters C; and C;, respectively.

avg(C) :%Zd(}c[,vi) 2)

HxieG

where |C;| denotes the number of data points in cluster C;.

Similar to the DB index, the CH index takes the cluster centers and
the center of the dataset as representative points, and measures the
within-cluster and between-cluster distances by the squared sum of the
distances from each point within a cluster to the cluster center and the
squared sum of the distances between each cluster center and the center
of the dataset, respectively. According to the Dunn index, the within-
cluster and between-cluster distances are measured using the distance
between the furthest and closest point pairs within a cluster and between
clusters, respectively. In addition, the PBM index (Pakhira, Bandyo-
padhyay, & Maulik, 2004) introduces the membership degree based on
the DB index for fuzzy clustering. The above method of describing
clusters based on cluster centers is only appropriate for spherical clusters
and is less effective for arbitrarily shaped clusters.

To adapt the indices to a variety of cluster shapes, the researchers
selected multiple points from the cluster to serve as representative
points. The data points that have at least one neighbor in the k-nearest

NC

Com(NC) = Z {”1("12—1) Z d(x,y)} 4)

i=1 x,yeCi

The CVNN index value is the sum of the normalized within-cluster
and between-cluster distances:

CVNN(NC. k) = SepNORM (/VC7 k) + COmNQRM (NC) (5)

When there is no overlap between clusters, the number of repre-
sentative points is small, so the value of Sep is smaller. In contrast, the
value of Sep is higher when there is an overlap between clusters. When
the CVNN index value reaches a minimum, it indicates that the dataset
has been reasonably partitioned. Similar to CVNN, the SSDD index and
RTI index (Rojas-Thomas, Santos, & Mora, 2017) also use multiple
points in a cluster as representative points. In the SSDD index, the data
points with greater densities are regarded as representative points. The
minimum spanning tree containing representative points is used as the
backbone of the cluster, and the clustering results are evaluated based
on the variation of the densities of the data points on the backbone.
According to the RTI index, each sub-cluster center is considered as a
representative and the within-cluster and between-cluster distances are
determined by the weight of the edges on the minimum spanning tree
comprised of the representative points. Unlike the above indices, the
LCCV and DCVI indices assign different size neighborhoods to each data
point based on the idea of natural nearest neighbors and use denser
points within the neighborhood as representative points. The LCCV
index uses the geodesic distance between the representative points and
evaluates the clustering results based on the SIL index. The DCVI index
constructs a minimum spanning tree based on representative points and
uses the ratio of the longest edge within a cluster and the shortest edge
between clusters as the outcome. In general, the above indices can
identify well-separated clusters of arbitrary shape, however, they do not
take into account the boundary of the clusters and their performance is
limited by the choice of representative points.
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Table 3
The description of 13 indices.
Name Optimal value Definition Reference
D M Di 1
unn ax min { min ( min _d(x,y)/ max { max d(a,b) }) } unn (1974)
1<i<K | 1<K \ x€CiyeCy 1<k<K | abecy
DB Min Singh, et al. (2020)
: 1ngn, et al.
CH Max
K- 121‘:1“"(12 (Vi’v)/N_ KZi:l Zdz(x,vi) Cengizler and Kerem-Un (2017)
XxeC;
SIL Max lew [1
EZi:l ;E[b(’()* (x)]/max[b(x), a(x)] Rousseeuw (1987)
1xeCi
aw =10 Y diey) b dx,y)
= y y = mi n
n — 1yEC(.X7‘y 1gj<K,ij n, yeS,
CVNN Min R— Yanchi Liu, et al. (2013)
mex a2k ) + S o 2 4
DCVI Min X . . .
Liamax{Wie }/Whﬂ{xeg{lyréq(d(x,y) ) } Xie, et al. (2020)
SSDD Min kx [max(Ag,) — min(Ag,) mean(Pc, ) - 1 rone
i=1 [ max(Ac,) max{mean(Pc, ), mean(Ac,) } Liang, et al. (2020)
Ccop Min 1/|C; d(x;,vi
ITIZ‘ I‘M Gurrutxaga, et al. (2010)
5 minygc maxs,cq d(Xj, Xi)
IMI Min ZK (Zj 2 HXJ le2> Yun Liu, et al. (2021)
T
' Z) 1Uij " Zﬁluik
! l -
mindu Vi — ve||* + mediand |vi — vil” X1y
0s Min Zqu,eqMXJ-G) Zalik and Zalik (2011)
alik and Zali
226 10/1Ci| 3 omax(0.1]Cil){d(x;, vi}
GEC:
PCAES Max . . K v =¥)* _ ;
i v Zﬁlexp(ﬂgy{\m kaHz}/ﬂr)uM = min {>,u3 . pr = M v =YK  Wuand Yang (2005)
sV Max K inen ke
Z':llinmj”[l“”‘l( 40V, v) Zalik and Zalik (2011)
Zi:l maXy;ec; d(xj: Vi)
Sym Max

maxS_ [vi = |/ (KK S dpe v

Bandyopadhyay and Saha (2008)

K: number of clusters; N: number of the all data points in dataset; C;: the ith cluster of dataset; n;: number of data points in C;; v;: the average of all data points in cluster
C;; v: the average of all data points in dataset; d(x, y): the Euclidean distance between data points x and y; A, : the density of the region where two adjacent points on the
backbone of cluster C; are located; Pc,: the density of region where the nearest data point pairs between clusters are located; Er: the set of edges on the minimum
spanning tree based on the representative points in cluster C;; W(e): the weight of edge e on the minimum spanning tree; uy is the membership value of x; to vi; ov(-)
represents the overlap degree; d;s measures the point symmetry between a data point and a cluster center.

3. Methodology

In this section, we describe and explain the definition, rationale,
complexity, and parameters related to the ANCV index.

3.1. Definition

Given a dataset Xy.p = {x1,X2,---, Xy} containing N data points of
dimension D. Suppose that the clustering algorithm partitions the
dataset X into K clusters, denoted as C = {cj, ¢z, ---,cx }. And we further
assume that Gx = (V, Ex) is the complete graph of the dataset X,Tx =
(V,Er,) is the minimum spanning tree constructed on Gx, where V is the
set of vertices consisting of N data points, and Er, denotes the set of all
edges on the minimum spanning tree. And the edges on Tx associated
with data points x; and x; are weighted by d(x;, x;) which is the Euclidean

distance between data points x; and x;.
Definition 1. (shared nearest neighbors)

Let Ni(i) and Ni(j) be respectively the sets of k-nearest neighbors
(kNN) of data points x; and x; in the dataset X. The set of shared nearest
neighbors (SNN) of data points x; and x; is defined by

Ns(i,j) = Ni(i) N N (j) (6)

Definition 2. (non-shared nearest neighbors)

Let Ns(i,j) be the SNN set of data points x; and x; in the dataset X and
Ni (i) be the kNN set of data point x;. The set of non-shared nearest
neighbors (NSNN) of x; with respect to x; is defined by

Nk (i) = Ns(i.) @)

According to Definition 2, the SNN of x; and x; are removed from the
kNN set of data point x; and the remaining points are called the non-
shared nearest neighbors of x; with respect to x;. Similarly, the NSNN
set of x; with respect to x; is defined by

N5(j); = Nk (j) = Ns(i,)) ®

NE(i)j =

Definition 3. (augmented non-shared nearest neighbors)

Let Ng(i); be the NSNN set of x; with respect to x;. The set of
augmented non-shared nearest neighbors (ANSNN) of x; with respect to
x; is defined by
Ns(i); = N5 (i), U {x:} — {x} )

For the data points x; and x; in the dataset X, there must exist x;,x; ¢
N;(i.j). Suppose x; € Ni(i), then x; € Ng(i);. According to Definition 3, x;
is removed from N(i); such that x; ¢ N;(i)j.
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Fig. 6. Clustering results on 12 synthetic datasets using CTCEHC under true cluster number.

Table 4
The results on 12 two-dimensional synthetic datasets.
Datasets DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8 DS9 DS10 DS11 DS12 Niit
T* 3 4 6 4 2 4 4 4 3 2 3 2 —
Dunn 2 2 5 2 2 3 5 3 2 2 3 12 3
DB 3 8 19 19 12 12 6 6 12 19 4 4 1
CH 3 26 23 15 25 26 7 20 12 32 6 4 1
SIL 3 7 22 10 10 9 6 6 12 19 6 4 1
CVNN 3 7 8 4 12 5 6 7 3 11 4 4 3
DCVI 3 4 6 4 2 4 21 3 3 2 3 2 10
SSDD 3 3 7 3 2 3 4 2 3 2 3 3 6
cop 3 7 22 16 15 11 7 6 11 17 6 4 1
MI 3 34 34 29 48 24 11 24 24 32 6 4 1
0s 3 10 19 19 13 20 4 10 12 19 5 4 2
PCAES 3 6 7 2 7 4 2 3 2 11 4 4 2
sV 3 8 19 20 8 11 4 10 12 17 6 4 2
Sym 3 4 18 11 13 22 6 13 3 24 5 4 3
ANCV 3 4 6 4 2 4 4 3 3 2 3 2 11
Definition 4. (within-cluster augmented non-shared nearest neighbor minimum spanning tree Tx. As an example, let us consider the point pair a
pair) and b. Here, k in the k-nearest neighbors is set to 4 for the sake of illustration.

Assume that there exists any point pair x; and x; in cluster ¢, such that
[Ns(i,j)| < € and e(x;,x;) € Er,, where ¢ is the threshold value. Let Klg(i)j
and Ng (j); be the ANSNN set of x; with respect to xj and the ANSNN set of

xj with respect to x;, respectively. The set of within-cluster augmented
non-shared nearest neighbor pairs is defined by

{u)

Example 1. Assume that the dots in Fig. 2(a) represent the data points
within the same cluster c, and the black lines represent the edges within the

N, = (10)

(qu € N5(i);, v, € fvg(j)i) st (Y, x, € c,)}

The kNN sets of a and b are {a;, az,b, b, } and {b1,b2,bs,a}, so the SNN set
of aad b is {b1 }. Furthermore, the ANSNN set of a with respectto b is {a,ai,
ay }, while the ANSNN set of b with respect to a is {b,bz,bs}. In addition, the
threshold value ¢ is set to 3 in this paper. So the point pair a and b satisfies
that |Ns(a,b)| < e and e(a, b) € Er,. Finally, the set of within-cluster
augmented non-shared nearest neighbor pairs KIQ is {(a,b), (a,b2),(a,bs), -,
(az,b2), (az,bs3)}, which consists of nine point pairs.

Definition 5. (within-cluster compactness)

If Nc[ # @, the within-cluster compactness is defined as the average
distance of all pairs of augmented non-shared nearest neighbors within
cluster c;, otherwise the within-cluster distance is determined by the
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Fig. 7. The relationship between cluster number and the 14 CVI values in DS3 under the CTCEHC algorithm.

average weight of Er, . The within-cluster compactness of cluster c; is
defined by

> d(x,x) / N,|if N, #@
(xuxv)ENG,
com(c;) = ! 11
(e Z d(x,-,xj)/}ETq‘ otherwise
e (xi .x,) €Er,

where Er, CEr,, the edges in Er, are composed of the data points in the
cluster c;, e(x;, x;) denotes the edge associated with the data points x; and
X;.
Definition 6. (between-cluster augmented non-shared nearest
neighbor pairs)

Given clusters ¢, and cp, assume that there exist any points x; and x;
such that x; € ¢, Xj € ¢n, and e(x;,X;j) € Er,. Let Klg(i)j and Klg(j)i be the
ANSNN set of x; with respect to xj and the ANSNN set of x; with respect to

x;, respectively. The set of between-cluster augmented non-shared
nearest neighbor pairs is defined by

<3xu c ﬁg(i)j, Ix, € Ng(j)i) s.t. (X, € Cy X,y € cn)}
12)

]VL.W_(.” = {(x“,xl,)

Example 2. In terms of the distribution of data points, Fig. 2(b) is similar
to Fig. 2(a). The difference is that Fig. 2(b) contains both clusters ¢, and cp,.
The data points a and b belong to c,, and cp, respectively, and there exists e(a,
b) € Er,, then the set N, ., constituted by the augmented non-shared nearest
neighbor point pairs between cp,, and c, is the same as Kict in Fig. 2(a), which

also includes nine point pairs.
Definition 7. (adjacent clusters)

Given clusters ¢, and cp,, assume that there exist any data points x;
and x; such that x; € ¢, X; € ¢y, and e(x;, Xj) € Ery, then ¢, and ¢, are
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Fig. 8. The relationship between cluster number and the 14 CVI values in DS7 under the CTCEHC algorithm.
Table 5
The results on 10 real datasets.
DataSets R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 Npir
T* 3 2 2 6 3 3 2 4 2 7 —
Dunn 3 6 5 2 3 9 7 4 4 7 4
DB 5 15 31 2 2 8 13 3 10 9 0
CH 5 2 2 2 3 5 2 3 2 2 5
SIL 3 6 2 2 3 5 2 3 2 7 6
CVNN 3 2 2 3 3 5 13 3 2 2 5
DCVI 4 2 6 2 2 6 2 26 2 2 3
SSDD 3 4 6 3 2 3 2 16 11 2 3
COP 3 3 4 2 2 4 2 4 2 10 4
IMI 3 13 2 2 2 9 10 3 7 6 2
oS 38 14 32 9 4 10 13 45 67 10 0
PCAES 2 6 14 2 3 8 4 4 2 2 3
sV 5 14 32 15 2 8 13 4 64 9 1
Sym 5 2 2 2 3 4 2 4 3 7 6
ANCV 3 15 2 6 3 11 13 4 13 7 6
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Fig. 9. The relationship between cluster number and the 14 CVI values in Glass under the CTCEHC algorithm.

adjacent clusters, denoted by < ¢y, cp >.

Corollary 1. An adjacent cluster pair < cm,cn > contains at least one pair
of between-cluster augmented non-shared nearest neighbor pairs, i.e.,

Nepeo # @-

Proof: " The clusters c,;, and ¢, are adjacent

-According to Definition 7, there exists the data point pair x; and x;
such that e(x;,X;j) € Ery, Xi € Cm,Xj € Cn

~» According to Definition 3, x; € N’g(i)j,xj € Ng(j)i

~According to Definition 6, the point pair (x;,x;) € Ne,c,-

~An adjacent cluster pair < cm,c, > contains at least one pair of
between-cluster augmented non-shared nearest neighbor pairs, i.e.,
Ne, ¢, # @00

Definition 8. (between-cluster separation)

Given two adjacent clusters < ¢, ¢, >, the between-cluster separa-
tion is defined as the average distance between all pairs of between-

10

cluster augmented non-shared nearest neighbors:

sep(emca) = > dx,x,) / ‘N (13)
(% r50) EN ey cn
Definition 9. (ANCYV index)

Assume that the dataset X is partitioned into K clusters C = {c1,c2," -,
ck}. The ANCV index is defined as the difference between the total
between-cluster separation SEPk(X) and the total within-cluster
compactness COMg (X):

ANCVk(X) = SEPx(X) — COMk(X) 14

1
SEPK(X) = K — lzsep(cmycn) (15)
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Fig. 10. The relationship between cluster number and the 14 CVI values in Wifilocalization under the CTCEHC algorithm.
Table 6
Parameter values and F1 values for Kernel k-means on 22 datasets.
Datasets D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11
o 0.20 0.12 0.12 0.12 0.15 0.16 0.23 0.14 0.15 0.42 0.17
F1 1 1 0.5481 1 0.8168 0.5743 0.8472 0.9498 1 0.9133 0.8064
Datasets D12 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10
o 0.18 4.50 1.30 0.10 1.40 1.10 1.10 0.90 5.0 1.30 2.60
F1 0.8758 0.4143 0.5174 0.4869 0.4135 0.9714 0.4432 0.5853 0.596 0.563 0.6254
Table 7
Parameter values and F1 values for DDC on 22 datasets.
Datasets D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11
k 5 5 10 10 5 10 10 10 5 10 5
A 0.3 0.45 0.3 0.3 0.35 0.3 0.3 0.4 0.3 0.3 0.35
F1 1 1 1 1 1 1 0.9993 0.9935 1 1 1
Datasets D12 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10
k 5 5 10 5 5 10 5 5 10 5 5
A 0.6 0.75 0.3 0.3 0.5 0.3 0.3 0.3 0.5 0.3 0.3
F1 0.991 0.4626 0.3354 0.4662 0.4758 0.4572 0.5545 0.5929 0.6809 0.5509 0.7478

11
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Table 8
The results of five clustering algorithms on 12 two-dimensional synthetic
datasets.

Datasets T* Kernel k-means CTCEHC NTHC SMKNN DDC
DS1 3 3 3 3 3 3
DS2 4 4 4 4 4 4
DS3 6 20 6 6 6 6
DS4 4 4 4 4 4 4
DS5 2 10 2 2 2 2
DS6 4 12 4 4 4 4
DS7 4 4 4 3 3 4
DS8 4 13 3 4 2 4
DS9 3 3 3 3 3 3
DS10 2 7 2 2 2 2
DS11 3 6 3 3 3 3
DS12 2 2 2 2 2 2
Niie 6 11 11 10 12

Table 9

The results of five clustering algorithms on 10 real datasets.
Datasets T* Kernel k-means CTCEHC NTHC SMKNN DDC
R1 3 3 3 2 4 3
R2 2 10 15 2 6 15
R3 2 2 2 2 2 11
R4 6 3 6 11 6 6
R5 3 3 3 3 3 2
R6 3 4 11 3 3 3
R7 2 17 13 2 15 14
R8 4 4 4 3 4 4
R9 2 3 13 2 4 2
R10 7 6 7 7 5 5
Nyt 4 6 7 5 5

1 &
COMk(X) =% ;com(c,-) (16)

Algorithm 1 gives detailed steps for implementing the ANCV index.
Algorithm 1: ANCV

Input: Data set X containing N data points, X is partitioned into 2, 3,---,
V/N clusters {ci}, the value of k in the k-nearest neighbors,e = 3
Output: Optimal cluster number Optx
1fori=1toNdo
2 forj=1toNdo
3 if i #j then

4 Calculate Ns(iﬁj),Ng(i)j,}(i)j according to Egs. (6), (7),
5 and (9), respectively

6 end

7 end

8 end

9 for K = 2 to /N do

10 forj=1toK do

11 Calculate NC,, com(cj), according to Egs. (10) and (11),
12 respectively

13 end

14 end

15 for K = 2 to /N do

16 form=1toK-1do

17 forn =m-+1 to K do

18 if ¢, and ¢, are adjacent clusters then

19 Calculate N, ., , sep(cm, ¢z) according to Egs. (12) and
20 (13), respectively

21 end

22 end

23 end

24 end

25 forK =2 to vN do

26 Calculate ANCVk(X) according to Egs. (14) (15) and (16)
27 end

28 Opty = argmax ANCVg(X)

12
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3.2. An explanation of ANCV

In this paper, we extend our analysis from the point pairs with fewer
SNN within a cluster to the within-cluster ANSNN pairs, so that several
small clusters are formed, and we calculate the distance between the
small clusters to measure the within-cluster compactness, which has the
advantage of avoiding the ANCV index being influenced by the cluster
shape. For example, Fig. 3 shows the clustering results obtained using
the NTHC algorithm for the Smile Face dataset (Ma, et al., 2021) by K =
3, 4, and 5. As shown in Fig. 3(a), (c), and (e), the blue triangles indicate
the within-cluster augmented non-shared nearest neighbor pairs, while
the pairs with shared nearest neighbor number less than 3 are connected
by blue lines. These point pairs form small clusters whose shape is not
significantly affected by the shape of the cluster. Moreover, if the cluster
number is smaller than the real number, the clustering algorithm will
mistakenly merge multiple clusters into one. As an example, Fig. 3(a)
shows the clustering results of three clusters, where the cluster marked
with black dots indicates that the clustering algorithm wrongly merged
two clusters into one. Fig. 3(a) illustrates that the distance between the
augmented non-shared neighbor pairs at the intersection of the two
clusters is relatively large. Since the within-cluster compactness of this
cluster is large, the total within-cluster compactness COM3(X) is also of a
high level. As shown in Fig. 3(c), the clustering results are correct when
K = 4, so there is no similar situation.

When measuring the inter-cluster separation, the point pairs be-
tween adjacent clusters are selected as representative points, and the
representative points are further extended to their augmented non-
shared nearest neighbors so that small clusters are formed at the inter-
section of adjacent clusters and the inter-cluster separation can be
estimated by the average distance between the point pairs between the
small clusters. The proposed inter-cluster separation measure can also
reduce the influence of cluster shape. In Fig. 3(b), (d), and (f), blue
triangles represent the between-cluster augmented non-shared nearest
neighbor pairs and blue lines represent the point pairs that have edges
on the minimum spanning tree. When K = 3, there are between-cluster
augmented non-shared nearest neighbor pairs between red and black
clusters, and green and black clusters, respectively. As shown in Fig. 3
(d), when K = 4, the between-cluster augment non-shared nearest
neighbor pairs are added between the yellow and green clusters on the
basis of K = 3. According to Fig. 3(f), when K = 5, the green and yellow
clusters should originally form the same cluster, and sep(creq, Cgreen) is
relatively smaller, thus making SEPs(X) smaller than SEP,4(X).

Fig. 4 illustrates the clustering evaluation results of the Smile Face
dataset using the ANCV index, where K varies from 2 to 26 and the red,
blue, and green lines represent the within-cluster compactness,
between-cluster separation and the ANCV index results of the dataset,
respectively. Fig. 4 shows that COM4(X) is much smaller than COM;(X)
and COMs(X) when K is equal to the true cluster number 4. The curve
associated with COMg(X) tends to become more stable as K increases.
Additionally, SEP,4(X) is significantly larger than SEP3(X) and SEPs(X).
Therefore, when K = 4, the ANCV index value has the highest value, thus
defining 4 as the optimal cluster number.

3.3. Time complexity

In Algorithm 1, Lines 1-8 construct the minimum spanning tree Tx
and calculate N;(i, j),N5(i);, and Ng(i)j. Construction of the minimum
spanning tree and computing the k-nearest neighbors of data points can
be combined to reduce computing time. Given dataset X with N data
points, the time complexity of constructing the minimum spanning tree
using Prim algorithm (L. Liu, Ma, Zhang, Zhang, & Li, 2017) is O(N?),
and the time required to calculate the shared and non-shared nearest
neighbors between point pairs is about O(N).

Lines 9-14 in Algorithm 1 calculates the within-cluster compactness
com(c;j). When data point pairs satisfying the threshold condition exist in
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Fig. 11. The point pairs (indicated by red lines) that satisfy the number of shared nearest neighbors less than ¢ on the Smile Face dataset, where the clustering results
of CTCEHC under the optimal number of clusters identified by ANCV are also shown.
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Fig. 12. The Np; values for 12 two-dimensional synthetic datasets under
different ¢ values.

each cluster, the time complexity of computing the within-cluster

compactness com(c;) is approximately O(K ‘ch ’). In contrast, when no

data point pair satisfies the threshold condition, the time complexity of
computing the within-cluster distance com(c;) is about O(K ‘ETCJ_ ‘).

Lines 15-24 in Algorithm 1 calculates the between-cluster separation
sep(cm, ¢n). The time required to calculate the between-cluster distance

).
Lines 25-28 in Algorithm 1 calculate ANCVg(X) and the time

sep(cm, ¢n) is about O( Ncm,c,.
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Fig. 13. The Ny; values for 10 real datasets under different ¢ values.

complexity of this part can be ignored.
In summary, the time complexity required for the ANCV index is

approximately O(N?)+O(N)+O(K|N,, ) + O(|Ngyca|)-

)or O(K‘ETCj

4. Experiments and results

In this section, we evaluate the performance of the ANCV index using
12 two-dimensional synthetic datasets and 10 real datasets from UCI
(Cheng, et al., 2018; Kwon & Sim, 2013; Xie, et al., 2020). Fig. 5 shows
12 two-dimensional synthetic datasets. Tables 1 and 2 provide the
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Table 10
F1 and AMI values for CTCEHC based on the given optimal cluster number by
ANCV.

Datasets F1 AMI Datasets F1 AMI
DS1 1 1 DS12 1 1

DS2 1 1 R1 0.3842 0.0072
DS3 1 1 R2 0.4710 0.1761
DS4 1 1 R3 0.5476 0.0063
DS5 1 1 R4 0.6103 0.2892
DS6 1 1 R5 0.9571 0.8534
DS7 1 1 R6 0.4162 0.1428
Ds8 0.9023 0.9157 R7 0.5197 —0.0024
DS9 1 1 R8 0.8719 0.7738
DS10 1 1 R9 0.3459 0.0221
DS11 1 1 R10 0.7691 0.8307

descriptions of the 12 two-dimensional synthetic datasets and 10 real
datasets, respectively. Our experiments used five clustering algorithms,
Kernel k-means, CTCEHC, NTHC, SMKNN, and DDC, to carry out the
classification. A total of 13 indices are compared with the ANCV Index,
including Dunn, DB, CH, SIL, CVNN, DCVI, SSDD, COP, IMI, OS, PCAES,
SV, and Sym. A detailed description of these 13 indices is shown in
Table 3. As a rule of thumb, we set the range of cluster numbers to [2,
\/ﬁ]. The experimental environment is an Intel i7-11800H computer
with 16G of RAM, and the software used is MATLAB2021a. In addition, k
in the k-nearest neighbors and the threshold ¢ in the ANCV index are set
to 10 and 3, respectively. The source code of the proposed algorithm is
available online at https://github.com/xjDUAN184/ANCV-validit
y-index/tree/master.

4.1. Test on 12 synthetic datasets

According to Table 1, DS1 is composed of three spherical clusters,
while DS2 is composed of four linear clusters. DS3 and DS11 contain
clusters of both linear and spherical shapes. Both DS4 and DS9 have ring-
shaped and spherical clusters. Both DS5 and DS6 consist of multiple arc-
shaped clusters. DS7 has four spherical clusters of varying densities. DS8
and DS12 are composed of spherical and arc-shaped clusters. DS10
consists of two ring-shaped clusters.

To evaluate the performance of the ANCV index, the 12 synthetic
datasets were clustered using the CTCEHC algorithm. Fig. 6 shows the
clustering results of CTCEHC. As seen in Fig. 6, CTCEHC obtained cor-
rect clustering results for all 12 synthetic datasets under the true number
of clusters. And experiments were conducted on 14 validity indices,
including ANCV. Table 4 lists the experimental results, where T* rep-
resents the true cluster number, Ny; is the number of times the index
correctly identifies the cluster number, and the bold number indicates
that the result is identical to the true cluster number.

As shown in Table 4, the DB, CH, SIL, COP, and IMI indices can only
correctly obtain the cluster number of DS1, but not those of the other
datasets. It is primarily due to the fact that these indices are highly
dependent on clustering centers, and if the clustering centers are
incorrect, then the results of the indices will also be incorrect. The
performance of OS and SV is slightly higher than the above-mentioned
indices, and they get the correct cluster number of both DS1 and DS7
datasets. The 14 indices, except for the Dunn index, correctly identify
the cluster number for DS1, which consists of three spherical clusters.
The six indices Dunn, CVNN, DCVI, SSDD, Sym, and ANCV performed
well on at least three datasets. The Sym index is effective for internal
symmetric datasets DS1, DS2, and DS9. All four indices Dunn, DCVI,
SSDD, and ANCYV are effective on DS5 and DS10, which contain arc- and
ring-clusters. The SSDD index can also obtain the correct cluster number
for the four datasets DS1, DS7, DS9, and DS11, indicating that SSDD can
identify clusters of different shapes and densities. ANCV and DCVI are
both effective for at least 10 datasets, and their performance is superior
to that of the other 12 indices. Overall, the ANCV index is the most stable
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of the 14 indices and performs well on 11 datasets.

Figs. 7 and 8 illustrate the relationship between cluster number and
the 14 CVI values in DS3 and DS7 under the CTCEHC algorithm,
respectively. The red dots indicate the optimal number of clusters ob-
tained by the respective index. Since the DCVI index evaluates the
clustering result according to the selected denser points, the range of the
number of clusters for this index is smaller than that of the other indices.
For DS3, both ANCV and DCVI indices obtained the correct optimal
cluster number. DS7 consists of four spherical clusters of different den-
sities. Despite Dunn, DB, CH, SIL, and COP performing better for
spherical clusters, these indices are unable to identify the correct num-
ber of clusters due to the large difference in density between clusters.
SSDD, 0S, SV, and ANCV can accurately determine the optimal number
of clusters for DS7.

4.2. Test on 10 real datasets from UCI

To further evaluate the performance of the ANCV index, the 10 real
datasets were clustered using the CTCEHC algorithm. And experiments
were conducted on 14 validity indices, including ANCV. Table 5 lists the
experimental results, where T* represents the true cluster number, Np; is
the number of times the index correctly identifies the cluster number,
and the bold number indicates that the result is identical to the true
cluster number. The datasets in Table 5 are represented by abbreviations
listed in Table 2 to save table space. For the R1 dataset, the true cluster
number can be detected by seven indices, including Dunn, SIL, CVNN,
SSDD, COP, IMI, and ANCV. There are also seven indices valid for the R5
dataset, including Dunn, CH, SIL, CVNN, PCAES, Sym, and ANCV. Six
indices can determine the correct number of clusters in each of the four
datasets R3, R7, R8, and R9. Furthermore, for the R4 and R6 datasets,
only one index (ANCV and SSDD, respectively) can identify the correct
cluster number. For all 10 datasets, both the DB and OS indices are
invalid. Both the CH and SIL indices can obtain the correct number of
clusters for the R3, R5, R7, and R9 datasets. Among the 14 indices, SIL,
Sym, and ANCV have the most robust performance and are valid for six
datasets.

Figs. 9 and 10 illustrate the relationship between cluster number and
the 14 CVI values in Glass and Wifilocalization under the CTCEHC al-
gorithm, respectively. The red dots indicate the optimal number of
clusters obtained by the respective index. For Glass, only ANCV got the
correct number of clusters. Dunn, COP, PCAES, SV, Sym, and ANCV
provide the correct number of clusters for Wifilocalization.

4.3. Application of ANCV to other clustering algorithms

To evaluate the performance of ANCV under different clustering al-
gorithms, we conducted experiments on 12 synthetic and 10 real data-
sets using five clustering algorithms: Kernel k-means, CTCEHC, NTHC,
SMKNN, and DDC. These five clustering algorithms can identify non-
spherical clusters. The Kernel k-means algorithm utilizes the Gaussian
kernel function, whose parameters ¢ are listed in Table 6. Table 7 pro-
vides values for the parameters k and 1 involved in the DDC algorithm.
Moreover, Tables 6 and 7 show the F1 values of Kernel k-means and DDC
algorithms under the given parameters as well as the true cluster num-
ber. The larger the F1 value, the better the clustering effect. For the
Kernel k-means and DDC algorithms, we used coarse grid search to
determine the optimal parameter values for 22 datasets to ensure that
they performed optimally with the true number of clusters. Additionally,
the parameters involved in the three clustering algorithms CTCEHC,
NTHC, and SMKNN are used with their default values.

In our experiments, the above five clustering algorithms were
applied to the synthetic and real datasets, respectively, and then ANCV
was used to obtain the optimal number of clusters. Tables 8 and 9 pre-
sent the corresponding results, where T* represents the true cluster
number, Ny; is the number of times the index correctly identifies the
cluster number, and the bold number indicates that the result is identical
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to the true cluster number.

As seen in Table 8, the five clustering algorithms obtained the correct
number of clusters on five datasets, DS1, DS2, DS4, DS9, and DS12.
ANCV can correctly identify the number of clusters for more than 10
datasets using four clustering algorithms, CTCEHC, NTHC, SMKNN, and
DDC. ANCV has the worst performance on Kernel k-means and can only
identify a total of six datasets, DS1, DS2, DS4, DS7, DS9, and DS12. And
all these six datasets have F1 values close to 1 in Table 6. The remaining
six datasets had lower F1 values. Additionally, ANCV correctly identi-
fied all 12 datasets with DDC. According to Table 7, all 12 datasets have
F1 values close to 1. Thus, ANCV can obtain the correct number of
clusters for an accurate clustering result. However, when the clustering
result is inaccurate, it is difficult for ANCV to determine the correct
number of clusters.

We further analyze the results in Table 9. ANCV on the real dataset
has a lower Np; value than on the synthetic datasets. It is due to the fact
that the real datasets have higher dimensionality than synthetic data-
sets, as well as a more complex distribution of data points. In addition,
ANCV produced fewer differences in Np; values for these five clustering
algorithms. Similarly to the synthetic dataset, we can conclude from
Tables 8 and 9 that the goodness of the clustering results influences
ANCV performance.

5. Discussion

This section discusses the parameters ¢ involved in ANCV. According
to Definition 4, only point pairs with fewer than e shared nearest
neighbors are used to calculate within-cluster compactness. Thus,
within-cluster compactness is defined as the average distance of all pairs
of augmented non-shared nearest neighbors within a cluster, where
these pairs are derived from point pairs with a shared nearest neighbor
number less than ¢. ¢ has a value range of [1, k + 1], where k is the
number of nearest neighbors. There are no shared nearest neighbors
between point pairs when ¢ = 1, whereas all point pairs satisfy the
condition when ¢ = k + 1.

Fig. 11 shows the point pairs (indicated by red lines) on the Smile
Face dataset that satisfy a shared nearest neighbor number less than ¢
under different values of ¢. In addition, Fig. 11 also shows the clustering
results of CTCEHC for the optimal number of clusters identified by
ANCV. Fig. 11 illustrates that when ¢ is small, there are fewer point pairs
in the cluster, or perhaps none at all. In this case, the within-cluster
compactness equals the average weight of the minimum spanning tree
within the cluster according to Definition 5. This will result in a small
value for within-cluster compactness, which cannot accurately reflect
the distribution of data points within the cluster. As ¢ increases, there are
more point pairs in the cluster, which indicates that most point pairs in
the cluster contribute to the within-cluster compactness. As a result, the
final result may not necessarily reflect the distribution of data points
within the cluster. Thus, the performance of ANCV is influenced by the
value of e.

Following are the experiments conducted to determine a more
appropriate ¢ value. We first cluster 12 two-dimensional synthetic
datasets and 10 real datasets using Kernel k-means, CTCEHC, NTHC,
SMKNN, and DDC five algorithms, respectively. Next, calculate the
number of times (expressed by Np;) the ANCV index correctly identifies
the cluster number under different values of e. Figs. 12 and 13 show the
Npir values of ANCV on 12 synthetic datasets and 10 real datasets,
respectively. As can be seen in Figs. 12 and 13, Ny; values are lower
when ¢ greater than 4. When ¢ = 3, all five clustering algorithms have
larger Ny;; values. Therefore, we set ¢ to 3 in this paper.

Additionally, the clustering effect plays a role in the performance of
ANCV. Further explanation is provided by the following experiments. As
a first step, CTCEHC is used to cluster 12 two-dimensional synthetic
datasets and 10 real datasets, and then ANCYV is applied to determine the
optimal number of clusters. Next, we evaluate the clustering effect using
F1 and AMI (Chowdhury, Bhattacharyya, & Kalita, 2021), two external
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clustering validity indices. Table 10 lists the values of F1 and AMI,
where the bold number indicates that ANCV provides the correct num-
ber of clusters for the corresponding dataset. The greater the F1 and
AMI, the better the clustering effect. Table 10 shows that, except for
DS8, ANCV is effective on the remaining 11 synthetic datasets, and the
corresponding F1 and AMI values reach a maximum of one. For real
datasets, ANCV is effective on the R5, R8, and R10 datasets, and the
corresponding F1 and AMI values on these datasets are much greater
than those on the rest of the datasets. ANCV is also capable of correctly
identifying the cluster number for the three datasets R1, R3, and R4
despite their small F1 and AMI values.

Because ANCV has a time complexity greater than O(N?), it is not
suitable for processing massive datasets. A parallel version of ANCV can
be developed to reduce its complexity. Many of the operations of ANCV
are focused on constructing a minimum spanning tree. We can use a
parallel algorithm on the GPU to obtain a minimum spanning tree (de
Alencar Vasconcellos, Caceres, Mongelli, & Song, 2017; Prokopenko,
Sao, & Lebrun-Grandie, 2022). In addition, the calculation of within-
cluster compactness focuses primarily on the determination of within-
cluster augmented non-shared neighbor point pairs. Multiple threads
can be assigned to different point pairs on the minimum spanning tree,
which are processed by the GPU in parallel. The calculation of between-
cluster separation is mainly focused on determining the augmented non-
shared neighbor point pairs between clusters. Multiple threads can also
be assigned to point pairs located between clusters so that the GPU can
process them concurrently.

6. Conclusion

In this paper, a new cluster validity index is proposed. The proposed
index is based on the point pairs with fewer shared nearest neighbors.
And the within-cluster and between-cluster augmented non-shared
nearest neighbors are taken as the representative points. The average
distance between these representative points is taken as within-cluster
compactness and between-cluster separation.

The core ideas of the proposed index include the following: (1) We
search for small clusters with a relatively loose distribution within the
cluster, and use the average distance between the point pairs within
these small clusters as an indicator of the within-cluster compactness of
the entire cluster. As a result, the index performance is less affected by
the shape of the cluster. Another advantage is that when two clusters are
incorrectly merged into one cluster, the within-cluster compactness of
the smaller clusters within the wrongly merged cluster is greater than
the within-cluster distances of the two separate clusters, respectively,
thus better reflecting the distribution of data points within the cluster.
(2) The average distance between pairs of data points at the intersection
of two clusters is used as the between-cluster separation, making the
index performance less influenced by the cluster shape. In our experi-
ments, we selected five clustering algorithms, Kernel k-means, CTCEHC,
NTHC, SMKNN, and NTHC, to cluster 12 synthetic datasets and 10 real
datasets, respectively, and compared CTCEHC with Dunn, DB, CH, SIL,
CVNN, DCVI, SSDD, COP, IMI, OS, PCAES, SV, and Sym for a total of 13
indices. And the experimental results showed that the ANCV index had
the best performance.

As a result of our experiments, we found that it is harder to find the
correct number of clusters to compute the ANCV index if the clustering
results are incorrect for the real number of clusters. To address this issue,
we will continue to improve the ANCV index in future studies so that it
can be adapted to different clustering situations.
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